
CS
CS

C O M P U T E R
S C I E N C E

Course
Description

M A Y 2 0 0 4 , M A Y 2 0 0 5

Includes important
information
regarding the
introduction of
the language Java.

The College Board is a national nonprofit membership association whose mission
is to prepare, inspire, and connect students to college and opportunity. Founded in
1900, the association is composed of more than 4,300 schools, colleges, universities,
and other educational organizations. Each year, the College Board serves over three
million students and their parents, 22,000 high schools, and 3,500 colleges through
major programs and services in college admissions, guidance, assessment, financial
aid, enrollment, and teaching and learning. Among its best-known programs are the
SAT®, the PSAT/NMSQT®, and the Advanced Placement Program® (AP®). The College
Board is committed to the principles of equity and excellence, and that commitment
is embodied in all of its programs, services, activities, and concerns.

For further information, visit www.collegeboard.com.

The College Board and the Advanced Placement Program encourage teachers, AP
Coordinators, and school administrators to make equitable access a guiding principle
for their AP programs. The College Board is committed to the principle that all
students deserve an opportunity to participate in rigorous and academically
challenging courses and programs. All students who are willing to accept the
challenge of a rigorous academic curriculum should be considered for admission to
AP courses. The Board encourages the elimination of barriers that restrict access to
AP courses for students from ethnic, racial, and socioeconomic groups that have
been traditionally underrepresented in the AP Program. Schools should make every
effort to ensure that their AP classes reflect the diversity of their student population.

For more information about equity and access in principle and practice, contact the
National Office in New York.

Copyright © 2003 College Entrance Examination Board. All rights reserved. College
Board, Advanced Placement Program, AP, AP Vertical Teams, APCD, Pacesetter,
Pre-AP, SAT, Student Search Service, and the acorn logo are registered trademarks
of the College Entrance Examination Board. AP Central is a trademark owned by the
College Entrance Examination Board. PSAT/NMSQT is a registered trademark jointly
owned by the College Entrance Examination Board and the National Merit
Scholarship Corporation. Educational Testing Service and ETS are registered trade-
marks of Educational Testing Service. Other products and services may be
trademarks of their respective owners.

For the College Board’s online home for AP professionals, visit AP Central at
apcentral.collegeboard.com.

Contents
Welcome to the AP® Program .1

AP Courses .1
AP Exams .1

AP Computer Science .3
Introduction .3
The Courses .4

Goals .4
Computer Language .5
Equipment .6
Prerequisites .6
Teaching the Courses .7

Topic Outline .8
Commentary on the Topic Outline .14
Case Studies .32
The Examinations .34

Computer Science A: Sample Multiple-Choice Questions 35
Answers to Computer Science A

Multiple-Choice Questions .59
Sample Free-Response Questions .60

Suggested Solutions to Free-Response Questions 79
Computer Science AB: Sample Multiple-Choice Questions86

Answers to Computer Science AB
Multiple-Choice Questions .103

Sample Free-Response Questions .104
Suggested Solutions to Free-Response Questions 121

Appendix A .126
AP Computer Science Java Subset .126

Appendix B .138
Standard Java Library Methods Required for APCS A 138

Appendix C .140
Standard Java Library Methods Required for APCS AB140

Appendix D .144
Implementation classes for linked list and tree nodes
(APCS AB) .144

Appendix E .146
Interfaces for stacks, queues, and priority queues (APCS AB) . .146

apcentral.collegeboard.com iii

AP Program Essentials .150
The AP Reading .150
AP Grades .150

Grade Distributions .150
Earning College Credit and/or Placement .150

Why Colleges Grant Credit and/or Placement for AP Grades . . .151
Guidelines on Granting Credit and/or Placement for

AP Grades .151
Finding Colleges That Accept AP Grades 152

AP Awards .152
AP Calendar .152
Test Security .152
Teacher Support .153
Pre-AP® .154
Pre-AP Professional Development .155
AP Publications and Other Resources .155

Ordering Information .155
Print .156
Multimedia .158

iv apcentral.collegeboard.com

apcentral.collegeboard.com 1

Welcome to the AP® Program

The Advanced Placement Program® (AP®) is a collaborative effort
between motivated students, dedicated teachers, and committed high
schools, colleges, and universities. Since its inception in 1955, the Program
has allowed millions of students to take college-level courses and exams,
and to earn college credit or placement while still in high school.

Most colleges and universities in the U.S., as well as colleges and uni-
versities in 21 other countries, have an AP policy granting incoming stu-
dents credit, placement, or both on the basis of their AP Exam grades.
Many of these institutions grant up to a full year of college credit (sopho-
more standing) to students who earn a sufficient number of qualifying
AP grades.

Each year, an increasing number of parents, students, teachers, high
schools, and colleges and universities turn to AP as a model of educa-
tional excellence.

More information about the AP Program is available at the back of this
Course Description and at AP Central™, the College Board’s online home
for AP professionals (apcentral.collegeboard.com). Students can find more
information at the AP student site (www.collegeboard.com/apstudents).

AP Courses

Thirty-four AP courses in a wide variety of subject areas are currently
available. Developed by a committee of college faculty and AP teachers,
each AP course covers the breadth of information, skills, and assignments
found in the corresponding college course. See page 2 for a list of the AP
courses and exams that are currently offered.

AP Exams

Each AP course has a corresponding exam that participating schools
worldwide administer in May. Except for Studio Art, which is a portfolio
assessment, AP Exams contain multiple-choice questions and a free-
response section (either essay or problem-solving).

AP Exams represent the culmination of AP courses, and are thus an
integral part of the Program. As a result, many schools foster the expecta-
tion that students who enroll in an AP course will go on to take the corre-
sponding AP Exam. Because the College Board is committed to providing

2 apcentral.collegeboard.com

homeschooled students and students whose schools do not offer AP
access to the AP Exams, it does not require students to take an AP course
prior to taking an AP Exam.

AP Courses and Exams

Art

Art History
Studio Art (Drawing Portfolio)
Studio Art (2-D Design Portfolio)
Studio Art (3-D Design Portfolio)

Biology

Calculus

Calculus AB
Calculus BC

Chemistry

Computer Science

Computer Science A
Computer Science AB

Economics

Macroeconomics
Microeconomics

English

English Language and Composition
English Literature and

Composition

Environmental Science

French

French Language
French Literature

German Language

Government and Politics

Comparative Government and
Politics

United States Government and
Politics

History

European History
United States History
World History

Human Geography

Latin

Latin Literature
Latin: Vergil

Music Theory

Physics

Physics B
Physics C: Electricity and

Magnetism
Physics C: Mechanics

Psychology

Spanish

Spanish Language
Spanish Literature

Statistics

apcentral.collegeboard.com 3

AP Computer Science

Introduction

AP Computer Science courses and examinations will be administered
using the Java programming language beginning with the 2003-04 academic
year and the 2004 examinations.

This Course Description contains many revisions from previous years
due to the change in the computer language used to illustrate computer
science concepts covered in the AP Computer Science courses. The topic
outline has been revised to reflect new topics supported by the language
and new sample questions are included. Read the following information
carefully to verify that your course offerings contain appropriate materials
for student preparation for the exams.

The Advanced Placement Program offers two computer science
courses: Computer Science A and Computer Science AB. The content of
Computer Science A is a subset of the content of Computer Science AB.
Computer Science A emphasizes object-oriented programming methodol-
ogy with a concentration on problem solving and algorithm development
and is meant to be the equivalent of a first-semester college-level course in
Computer Science. It also includes the study of data structures, design,
and abstraction, but these topics are not covered to the extent that they
are in Computer Science AB. Computer Science AB includes all the topics
of Computer Science A, as well as a more formal and in-depth study of
algorithms, data structures, design, and abstraction. For example, binary
trees are studied in Computer Science AB but not in Computer Science A.
For a listing of the topics covered, see the AP Computer Science topic out-
line on pages 8–13.

Computer Science A may be appropriate for schools offering an AP
Computer Science course for the first time, for schools whose faculty
members have not yet developed sufficient expertise to cover the material
in Computer Science AB, or for schools wishing to offer a choice of courses.

The nature of both AP courses is suggested by the words “computer
science” in their titles. Their presence indicates a disciplined approach to
a more broadly conceived subject than would a descriptor such as “com-
puter programming.” There are no computing prerequisites for either AP
course. Each is designed to serve as a first course in computer science for
students with no prior computing experience.

Because of the diversity of introductory computer science courses cur-
rently offered by colleges and universities, the outline of topics described
here may not match any sequence of courses exactly. The Association for
Computing Machinery (ACM) and the Institute of Electrical and Electronic

Engineers (IEEE) Computer Society have published standards for the con-
tent of a college-level program in computer science that include recom-
mendations for topics to be covered in the first two years of college. The
AP Computer Science A course is compatible with those topics that are
covered in a typical CS1 course as described in the example curricula in
the ACM/IEEE guidelines. The additional topics in the AP Computer
Science AB course are consistent with a CS2 course in those sample cur-
ricula. Some colleges and universities may organize their curricula in alter-
native ways so that the topics of the AP Computer Science A and AB
courses are spread over the first three or four college courses, with other
topics from computer science interspersed.

Either AP Computer Science course can be offered by any secondary
school that has faculty who possess the necessary expertise and have
access to appropriate computing facilities. It should be emphasized that
these courses represent college-level achievement for which most colleges
and universities can be expected to grant advanced placement and credit.
Placement and credit are granted by institutions in accordance with their
own policies, not by those of the College Board or the AP Program.

The Courses

The AP Computer Science courses are introductory courses in computer
science. Because the development of computer programs to solve prob-
lems is a skill fundamental to the study of computer science, a large part
of the course is built around the development of computer programs or
parts of programs that correctly solve a given problem. The course also
emphasizes the design issues that make programs understandable, adapt-
able, and, when appropriate, reusable. At the same time, the development
of useful computer programs and classes is used as a context for introduc-
ing other important concepts in computer science, including the develop-
ment and analysis of algorithms, the development and use of fundamental
data structures, and the study of standard algorithms and typical applica-
tions. In addition, an understanding of the basic hardware and software
components of computer systems and the responsible use of these sys-
tems are integral parts of the course. The topic outline on pages 8–13
summarizes the content of the AP Computer Science curriculum.

Goals

The goals of an AP course in computer science are comparable to those in
the introductory sequence of courses for computer science majors offered
in college and university computer science departments. It is not expected,
however, that all students in an AP Computer Science course will major in

4 apcentral.collegeboard.com

computer science at the university level. An AP Computer Science course
is intended to serve both as an introductory course for computer science
majors and as a course for people who will major in other disciplines that
require significant involvement with technology. It is not a substitute for
the usual college-preparatory mathematics courses.

The following goals apply to both of the AP Computer Science courses
when interpreted within the context of the specific course.

• Students should be able to design and implement computer-based
solutions to problems in a variety of application areas.

• Students should be able to use and implement well-known algo-
rithms and data structures.

• Students should be able to develop and select appropriate algo-
rithms and data structures to solve problems.

• Students should be able to code fluently in an object-oriented para-
digm using the programming language Java. Students are expected
to be familiar with and be able to use standard Java library classes
from the AP Java subset.

• Students should be able to read and understand a large program
consisting of several classes and interacting objects. Students
should be able to read and understand a description of the design
and development process leading to such a program. (An example
of such a program is the AP Marine Biology Simulation Case

Study.)
• Students should be able to identify the major hardware and software

components of a computer system, their relationship to one another,
and the roles of these components within the system.

• Students should be able to recognize the ethical and social implica-
tions of computer use.

Computer Language

The content of the college-level introductory programming course has
evolved significantly over the years. Starting as a treatment merely of lan-
guage features, it eventually incorporated first the notions of procedures
and procedural abstraction, then the use of modules and data abstraction.
At most institutions, the current introductory programming course takes
an object-oriented approach to programming that is based on encapsulat-
ing procedures and data and creating programs with interacting objects.
The AP Computer Science courses have evolved to incorporate this
approach.

Current offerings of the AP Computer Science Examination require the
use of Java. Those sections of the exam that require the reading or writing

apcentral.collegeboard.com 5

of actual programs will use Java. The exam will not cover all the features
of Java; it will be consistent with the AP Java subset. (See Appendix A.)
The AP Java subset can be found in the Computer Science section of AP
Central™ (apcentral.collegeboard.com).

Equipment

Students should have access to a computer system that represents rela-
tively recent technology. The system should be able to compile, in a matter
of seconds, programs of size comparable to the AP Marine Biology

Simulation Case Study, and response time should be reasonably rapid.
This will require large hard disk drives either on individual machines or
shared via a network.

Each student in the course should have a minimum of three hours per
week alone on a computer throughout the academic year; additional time
is desirable. This access can be made available at any time during the
school day or after school and need not be made available to all students
in the AP course simultaneously. It should be stressed that (1) this require-
ment represents a bare minimum of access; and (2) this time is not instruc-
tional time at a computer with the teacher or a tutor, but is time that the
student spends alone at a computer in addition to the instructional time.
Schools that do not allow their facilities to be used after school hours may
wish to reevaluate such a policy in light of the needs of their students who
take an AP Computer Science course.

Schools offering AP Computer Science will need to have Java software
and enough memory in their lab machines so that students will be able to
compile and run Java programs efficiently. Both free and commercial Java
systems are available from a variety of sources. At a minimum, the hard-
ware configuration will need large hard drives and sufficient memory to
support current operating systems and compilers.

Prerequisites

The necessary prerequisites for entering either of the AP Computer
Science courses include knowledge of mathematics at the level of a
second course in algebra and experience in problem solving. A student in
either AP Computer Science course should be comfortable with functions
and the concepts found in the uses of functional notation, such as
f(x) � x � 2 and f(x) � g(h(x)). It is important that students
and their advisers understand that any significant computer science course
builds upon a foundation of mathematical reasoning that should be
acquired before attempting such a course.

6 apcentral.collegeboard.com

Schools that offer Computer Science AB may have students who do
well on the topics covering programming methodology but do not deal as
well with the more advanced material on data structures and analysis of
algorithms. Such students might be advised to concentrate instead on the
topics listed for Computer Science A and to take the Computer Science A
examination.

Some schools may offer only Computer Science A and encourage
students who move at a faster pace to study the topics covered by the
Computer Science AB outline. They can then take the AP Examination in
Computer Science AB rather than the examination in Computer Science A.
Other schools may offer both courses and restrict enrollment in Computer
Science AB to students who have some prior programming experience.
Some schools may offer each course for a full year, while others cover
each in one semester. This will vary according to the background of the
students and the teacher.

One prerequisite for an AP Computer Science course, competence in
written communication, deserves special attention. Documentation plays a
central role in the programming methodology that forms the heart of an
AP Computer Science course. Students should have already acquired facil-
ity in written communication before entering such a course.

Teaching the Courses

The teacher should be prepared to present a college-level first course in
computer science. Each AP Computer Science course is more than a
course on programming. The emphasis in these courses is on procedural
and data abstraction, object-oriented programming and design methodol-
ogy, algorithms, and data structures.

Because of the dynamic nature of the computer science field, AP
Computer Science teachers will continually need to update their skills.
Some resources that may assist teachers in professional development are
AP Computer Science workshops and Summer Institutes, and Web sites
such as AP Central. For information on workshops, teachers should con-
tact their regional College Board office or go to AP Central.

One particular area of change is the evolution of programming lan-
guages and programming paradigms. Teachers should endeavor to keep
current in this area by investigating different programming languages.

apcentral.collegeboard.com 7

Topic Outline

Following is an outline of the major topics covered by the AP Examina-
tions in Computer Science. This outline is intended to define the scope of
the course, but not necessarily the sequence. The topics in the right-hand
column will not be tested on the Computer Science A examination.

I. Object-Oriented Program Design

The overall goal for designing a piece of software (a computer program)
is to correctly solve the given problem. At the same time, this goal should
encompass specifying and designing a program that is understandable, can
be adapted to changing circumstances, and has the potential to be reused
in whole or in part. The design process needs to be based on a thorough
understanding of the problem to be solved.

Computer Science A and AB Computer Science AB only

A. Program design
1. Read and understand a 1. Specify the purpose and goals

problem description, for a problem.
purpose, and goals.

2. Apply data abstraction and
encapsulation.

3. Read and understand class 3. Decompose a problem into
specifications and relation- classes, define relationships
ships among the classes and responsibilities of those
(“is-a,” ”has-a” relationships). classes.

4. Understand and implement
a given class hierarchy.

5. Identify reusable compo-
nents from existing code
using classes and class libraries.

8 apcentral.collegeboard.com

Computer Science A and AB Computer Science AB only

B. Class design
1. Design and implement a class. 1. Design and implement a set of
2. Design an interface. interacting classes.
3. Choose appropriate data repre- 3. Choose appropriate advanced

sentation and algorithms. data structures and algorithms.
4. Apply functional decompo-

sition.
5. Extend a given class using

inheritance.

II. Program Implementation

The overall goals of program implementation parallel those of program
design. Classes that fill common needs should be built so that they can be
reused easily in other programs. Object-oriented design is an important
part of program implementation.

Computer Science A and AB Computer Science AB only

A. Implementation techniques
1. Methodology

a. Object-oriented development
b. Top-down development
c. Encapsulation and infor-

mation hiding
d. Procedural abstraction

B. Programming constructs
1. Primitive types vs. objects
2. Declaration

a. Constant declarations
b. Variable declarations
c. Class declarations
d. Interface declarations
e. Method declarations
f. Parameter declarations

apcentral.collegeboard.com 9

Computer Science A and AB Computer Science AB only

3. Console output
(System.out.print/println)

4. Control
a. Methods
b. Sequential
c. Conditional
d. Iteration
e. Recursion

C. Java library classes C. Java library classes
(included in the A level (included in the AB level
AP Java Subset) AP Java Subset)

III. Program Analysis

The analysis of programs includes examining and testing programs to
determine whether they correctly meet their specifications. It also includes
the analysis of programs or algorithms in order to understand their time
and space requirements when applied to different data sets.

Computer Science A and AB Computer Science AB only

A. Testing
1. Test classes and libraries in

isolation
2. Identify boundary cases and

generate appropriate test data
3. Perform integration testing

B. Debugging
1. Categorize errors: compile-time,

run-time, logic
2. Identify and correct errors
3. Techniques: use a debugger,

add extra output statements,
hand-trace code

C. Understand and modify existing
code

D. Extend existing code using
inheritance

E. Understand error handling
1. Understand runtime exceptions

2. Throw runtime exceptions

10 apcentral.collegeboard.com

Computer Science A and AB Computer Science AB only

F. Reason about programs
1. Pre- and post-conditions
2. Assertions

3. Invariants
G. Analysis of algorithms

1. Informal comparisons of run-
ning times

2. Exact calculation of statement
execution counts

3. Big-Oh notation
4. Worst-case and average-case

time and space analysis
H. Numerical representations and

limits
1. Representations of numbers in

different bases
2. Limitations of finite represen-

tations (e.g., integer bounds,
imprecision of floating-point
representations, and round-
off error)

IV. Standard Data Structures

Data structures are used to represent information within a program.
Abstraction is an important theme in the development and application of
data structures.

Computer Science A and AB Computer Science AB only

A. Simple data types (int, boolean,
double)

B. Classes
C. One-dimensional arrays

D. Two-dimensional arrays
E. Linked lists (singly, doubly,

circular)
F. Stacks
G. Queues
H. Trees
I. Heaps
J. Priority queues
K. Sets
L. Maps

apcentral.collegeboard.com 11

V. Standard Algorithms

Standard algorithms serve as examples of good solutions to standard prob-
lems. Many are intertwined with standard data structures. These algo-
rithms provide examples for analysis of program efficiency.

Computer Science A and AB Computer Science AB only

A. Operations on A-level data A. Operations on AB-level data
structures previously listed structures previously listed
1. Traversals 1. Traversals
2. Insertions 2. Insertions
3. Deletions 3. Deletions

4. Iterators
B. Searching

1. Sequential
2. Binary

3. Hashing
C. Sorting

1. Selection
2. Insertion
3. Mergesort

4. Quicksort
5. Heapsort

12 apcentral.collegeboard.com

VI. Computing in Context

A working knowledge of the major hardware and software components of
computer systems is necessary for the study of computer science, as is the
awareness of the ethical and social implications of computing systems.
These topics need not be covered in detail, but should be considered
throughout the course.

Computer Science A and AB Computer Science AB only

A. Major hardware components
1. Primary and secondary memory
2. Processors
3. Peripherals

B. System software
1. Language translators/compilers
2. Virtual machines
3. Operating systems

C. Types of systems
1. Single-user systems
2. Networks

D. Responsible use of computer
systems
1. System reliability
2. Privacy
3. Legal issues and intellectual

property
4. Social and ethical ramifications

of computer use

apcentral.collegeboard.com 13

Commentary on the Topic Outline

The AP Computer Science (APCS) course is an introductory course in
computer science. Because the design and implementation of computer
programs to solve problems are skills that are fundamental to the study of
computer science, a large part of the APCS course is built around the
development of computer programs that correctly solve a given problem.
These programs should be understandable, adaptable, and, when appro-
priate, reusable. At the same time, the design and implementation of
computer programs is used as a context for introducing other important
aspects of computer science, including the development and analysis of
algorithms, the development and use of fundamental data structures, the
study of standard algorithms and typical applications, and the use of logic
and formal methods. In addition, an understanding of the basic hardware
and software components of computer systems and the responsible use of
these systems are integral parts of the course. The topic outline summa-
rizes the content of the APCS curriculum. In this section, we provide more
details about the topics in the outline.

I. Object-Oriented Program Design

Computer Science involves the study of complex systems. Computer soft-
ware is a part of a complex system. To understand the development of
computer software, we need tools that can make sense of that complexity.
Object-oriented design and programming form an approach that enables us
to do that, based on the idea that a piece of software, just like a computer
itself, is composed of many interacting parts.

The novice will not start by designing a whole program, but rather by
studying programs already developed, then writing or modifying parts of a
program to add to or change its functionality. Only later in the first course
will a student get to the point of working from a specification to develop a
design for a program or part of a program.

In an object-oriented approach, the fundamental part of a program is an
object, an entity that has state (stores some data) and operations that
access or change its state and that may interact with other objects. Objects
are defined by classes; a class specifies the components and operations of
an object and each object is an instance of a class.

14 apcentral.collegeboard.com

A. Program Design

A student in a first computer science course (APCS A) would learn to
work with the design of a program, but would not be expected to develop
a full program design. However, this student should be able to work from a
given design to develop the parts of the program. This would include an
understanding of how to apply the data abstractions covered in the first
course (classes and one-dimensional arrays).

A student in the first course should be able to understand the
relationships among the different classes that comprise a program.
One such relationship is an inheritance hierarchy, where a subclass
inherits characteristics from a superclass, thereby creating an “is-a”
relationship. For example if we have a class Elevator with a super-
class PersonalTransport and subclasses ExpressElevator
and FreightElevator, as shown in Figure 1, then we could say
that an ExpressElevator is-a(n) Elevator, an Elevator is-a
PersonalTransport, and so on. If it does not make sense to express
the natural relationship in terms of A is-a B, then it is not correct to use
inheritance to make A a subclass of B.

The other common relationship among classes is composition. One
class has one or more instances of another class as attributes. For exam-
ple, an Elevator would have ElevatorDoors. ElevatorDoors would
be a separate class, and the Elevator class would have one or more
instances of it among its attributes. This is an example of a “has-a” rela-
tionship: an Elevator has-a(n) ElevatorDoor. It would not make
sense to say an elevator is an elevator door, so to try to implement an
Elevator class by inheriting from an ElevatorDoor class would be
incorrect, even if it might be technically possible.

apcentral.collegeboard.com 15

Elevator

PersonalTransport

Tram

FreightElevatorExpressElevator

Figure 1

Students in the first course should be able to distinguish between these
different relationships among classes. They should also be able to imple-
ment a class inheritance hierarchy when given the specifications for the
classes involved — which classes are subclasses of other classes.

Students in the second course (APCS AB) should learn to work from a
given problem statement to define the purpose and goals of a program
intended to solve that problem. They then should be able to decompose
the problem into interacting objects and specify the classes needed to
define those objects, as well as the relationships among those classes.

An important skill when working with computer programs is to be able to
recognize the appropriate use of components from libraries. The APCS cur-
riculum specifies the classes from the Java libraries with which students
should be familiar, and students should be able to recognize the appropriate
use of these classes. In addition, students should recognize the possibilities
of reuse of components of their own code or other examples of code, such
as the AP Marine Biology Simulation Case Study, in different programs.

B. Class Design

A fundamental part of the development of an object-oriented program is
the design of a class. Students in the first course should be able to design a
class — write the class declaration including the instance variables and
the method signatures (the method bodies would comprise the implemen-
tation of this design) — when they are given a description of the type of
entity the class represents. Such a description would include the data that
must be represented by the class and the operations that can be applied to
that data. These operations range from simple access to the data or infor-
mation that can be derived from the data, to operations that change the
data (which stores the state) of an instance of the class. The design of a
class includes decisions on appropriate data structures for storing data
and algorithms for operations on that data. The decomposition of opera-
tions into subsidiary operations, functional decomposition, is part of the
design process. An example of the process of designing a class is given in
the sample free-response question which documents the logical considera-
tions for designing a savings account class.

A student in the second course (AB) should be able to develop a design
for a set of interacting classes, given the specifications for those classes
and their relationships. This student will also have a much broader set of
data structures and algorithms to use in design decisions.

16 apcentral.collegeboard.com

Given a design for a class, either their own or one provided, students in
the first course should then be able to implement the class (more details
on program implementation follow). They should also be able to extend a
given class using inheritance, thereby creating a subclass with modified or
additional functionality.

An interface is a specification for a set of operations that a class must
implement. In Java, there is a specific construct, the interface, that can
be specified for this purpose, so that another class can be specified to
implement that interface. Students in both the A and AB courses should
be able to design an interface by declaring all its methods, given a specifi-
cation of the operations that these methods represent.

Design as an Examination Topic

As noted in the topic outline, the A examination may include questions
that ask about the design as well as the implementation of classes or a
simple hierarchy of classes. The AB examination may include questions
that ask about the design of multiple classes that specify interacting
objects, as well as the implementation of such classes.

A design question would provide students with a description of the type
of information and operations on that information that an object should
encapsulate. Students would then be required to provide part or all of an
interface or class declaration to define such objects. An example of this
type of question appears as one of the sample free-response questions for
Computer Science A (see page 72).

A design question may require a student to develop a solution that
includes the following:

• appropriate use of inheritance from another class using keyword
extends

• appropriate implementation of an interface using keyword
implements

• declaration of constructors and methods with
• meaningful names
• appropriate parameters
• appropriate return types

• appropriate data representation
• appropriate designation of data and methods as public or
private

• all data should be private
• all client accessible operations should be specified as public

methods

apcentral.collegeboard.com 17

A design question might only require that a student specify the appropriate
constructor and method signatures (access specifier, return type, method
identifier, parameter list), and not require that the body of the constructors
or methods be implemented. A question focusing on a simple class hierar-
chy might also require implementation of the body of some or all methods
for some of the classes.

II. Program Implementation

In order to implement a program, one must understand the fundamental
programming constructs of the language, as well as understand the design
of the program. The fundamental principles of encapsulation and informa-
tion hiding should be applied when implementing classes and data struc-
tures. A good program will often have components that can be used in
other programs.

There are topics not included in the course outline that will be part of
any introductory course. For example, input and output must be part of a
course on computer programming. However, in a modern object-oriented
approach to programming, there are many ways to handle input and out-
put, including console based character I/O, graphical user interfaces and
applets. Consequently, the APCS curriculum does not prescribe any partic-
ular approach and will not test the details of input and output (except for
the basic console output, System.out.print/ln in Java), so that teach-
ers may use an approach that fits their own style and whatever textbook
and other materials they use.

A. Implementation Techniques

A variety of implementation techniques are used for organizing the code as
you develop classes and methods to implement the design. Object-oriented
development starts with the design process that breaks down a problem
into its constituent parts that are then represented by objects (that are
defined by class declarations). In the implementation phase, the opera-
tions on those objects are the methods that must be implemented for each
class. In addition, during the development of code, we might discover addi-
tional classes that can be useful. These might be classes found in a Java
library, or they might be auxiliary classes that we develop.

For example, in the sample free-response question on instant runoff
voting, we might have first designed this program using two classes, one
responsible for all the voter’s ballots, VoterBallots, and a second
responsible for the overall election, InstantRunoff. During the imple-
mentation of this program, we realize that we need to have a class to
represent each individual voter’s ballot. In the example as given in the
question, we chose to define our own new class, Ballot, to take on
this responsibility. Another choice would have been to use the class

18 apcentral.collegeboard.com

ArrayList from the Java library (see appendices). It is often the case
that we discover the need for additional classes during the implementation
phase of programming. This is a form of top-down programming when we
develop subsidiary classes to make the representation of each individual
class simpler. The process of organizing some information and the opera-
tions on that information into one unit, a class declaration, is called encap-

sulation. The technique of keeping the data representation hidden from
the client by specifying it private is called information hiding.

Another form of top-down development occurs as we define the meth-
ods for classes. If the code for a method is long and complex, we often
break out coherent parts of that code into subsidiary helper methods. Such
methods are normally declared private, since they are not part of the
client interface for a class. Another reason for encapsulating a piece of
code into a helper method is that it is used in more than one place. Rather
than repeat code, it is better to abstract it into a single method and call
that method. This process of abstracting pieces of code into methods is
called procedural abstraction.

The AP Marine Biology Simulation Case Study provides examples of
the procedural abstraction that we have described. Rather than repeat
code in each constructor for the Fish class, the private helper method
initialize is used to set the values of the instance variables. In the
move method in the Fish class top-down design has been used to break
the process into cohesive units using the private helper methods
nextLocation, emptyNeighbors, changeLocation, and
changeDirection.

B. Programming Constructs

Programming constructs are the tools of the trade. One needs to under-
stand the different programming constructs, variables, control structures,
etc., in order to create a program. These are tied closely to the language
used to teach the course. The different programming constructs are com-
mon to most languages that use a given paradigm for program design, usu-
ally differing only in syntax and some details. The abilities one gains by
learning to implement programs in Java would carry over quite easily to
any other object-oriented programming language such as Smalltalk, C#,
Eiffel, or C��.

The basic constructs for storing information are variables that are
either primitive types or objects. The primitive types included in the APCS
curriculum include Boolean, integer, and real, represented in Java as types
boolean, int, and double. Other Java types such as float (single pre-
cision floating point representation of real numbers) and char (charac-
ters) are not included in the testable subset, but may, of course be covered
in an APCS course.

apcentral.collegeboard.com 19

A class declaration defines a type and an instance of that class is called
an object. In Java, an object variable is a reference to that object, so that
when one object variable is assigned to another, they both refer to the
same object — an example of aliasing. (Technically, an object variable con-
tains the address where the object itself is stored in memory. The same
effect can be obtained in C�� by using reference variables.)

A declaration assigns an identifier to a construct and defines that con-
struct. A variable declaration indicates the type of the variable, which
may be one of the primitive types or a reference to a class. A constant is
declared in the same way, but may not change value once assigned; in Java
a constant is indicated by the keyword final. Class declarations specify
a new type of object, while interface declarations specify a type that
encompasses only the specified methods. A class can implement an inter-

face if it defines all the methods specified by the interface. An object of
such a class is type-compatible with the interface.

The encapsulation of actions, procedural abstraction, is accomplished
with methods. A method specifies some code to be executed when it is
called. A method declaration must include the access specifier (public
or private) [other options are not included in the testable subset], the
return type (void if nothing is to be returned), the identifier for the
method and the parameter list for the method. Most methods are instance
methods that are called with a reference to an object of the given class
followed by the method name, using the "." notation. Methods that are
static can be called with a reference to the class name, as for example,
the methods from the class Math such as Math.sqrt.

The parameter list contains the types and identifiers of the parameters
needed for a method. Java has much simpler parameters than some lan-
guages, e.g., Pascal and C��. All parameters in Java are value parameters.
However, this can be confusing, since this means different things for primi-
tive and object types. For primitive types, the fact that parameters are
always value parameters means that a copy of the value of the actual para-
meter passed is used within the method code. If a variable was used as the
actual parameter for the method call (any expression that evaluates to the
correct type could be used), then that variable is unchanged when the call
is completed.

For an object, the fact that parameters are always value parameters
means that a reference to an object is passed by value to the method. (This
is not the same as passing a parameter by reference.) This means that the
variable that was used as the actual parameter must be unchanged — it still
refers to the same object. However, within the method, the reference to that
object can be used to call its methods and these may change the internal
state of that object. Thus, although the actual parameter is unchanged and
refers to the same object, that object may have its internal state changed.

20 apcentral.collegeboard.com

The APCS curriculum does not prescribe any specific method of input
and output that should be used in teaching an APCS course, except that
students should know how to use the simple Java console output
System.out.print/ln that writes output to the console. Of course,
any introductory Computer Science course will include input and output,
but the means for doing this can be quite varied. Since it really has little
impact on the fundamental issues of Computer Science that the course is
about, the specific means used are left to the discretion of the teacher.
One might use applets with graphical input and output, an application that
uses a graphical user interface, such as the one supplied with the AP

Marine Biology Simulation Case Study or textual input and output. One
probably will use input from and output to text files as well. Teachers may
well choose to use simplified libraries that come with a textbook or that
can be found on the Internet for input and output, rather than the rela-
tively low-level constructs that are in the standard Java libraries.

Program statements are executed sequentially unless that sequence is
altered through the use of a control construct. The most common control
construct is the method call. Objects that are instances of library classes,
as well as objects that instantiate user defined classes, are manipulated
using calls to the object methods. These methods may simply return infor-
mation about the object (accessor methods) or may change the state of
the object (modifier or mutator methods). When teaching the object-
oriented design and programming paradigm, it is essential that the use of
objects defined both by library classes and by user defined classes, and the
transfer of control implied by method calls for those objects be taught
right from the start.

Within sequences of code, there are two types of constructs that can
change the normally sequential execution of statements, conditionals, and
iteration. These control constructs are common to virtually all imperative
programming languages. Conditional control most commonly takes the
form of if ... else statements. Typical if constructs including a simple
if with no else clause, if ... else, nested if ... else clauses and
the common multi-part if with mutually exclusive conditions given in
the form

if (...)
{...}

else if (...)
{ }

else if (...)
{...}

...
else
{...}

apcentral.collegeboard.com 21

Java also includes a switch statement. The syntax of the switch
statement is rather primitive and it is not included in the AP Java subset,
although teachers are free to include it in their courses if they so desire.
It adds no essential logic to the programming tools, however.

Iteration is accomplished by loop constructs that include the for loop,
the while loop, and the do ... while loop (the do ... while loop is
not in the AP Java subset). The syntax of these loops in Java is identical to
their syntax in C��, and the logic behind them is found in most program-
ming languages.

Another common means of getting repetitive behavior from a program
is the use of recursion. A recursive method is one that may call itself with
different parameters or that through a sequence of method calls eventually
causes another call to itself. Of course, a fundamental issue for recursion
is that there must be an end to the calls back to the same method in order
to avoid an infinite sequence of recursive calls. Consequently, any recur-
sive method must include a “base case,” a case when no further recursive
calls are made. The base case is commonly determined by a conditional
construct that makes no recursive call based on some condition among the
parameters, such as when a numeric parameter reaches a certain value. A
valid recursion must always have a base case and must always have logic
that makes successive recursive calls progress toward the base case in
some fashion. In an object-oriented design, the base case can be realized
without the explicit appearance of a conditional expression in the recur-
sive method. Using polymorphism of methods, where the method actually
called is determined by a subclass of a given class or interface, we may
find a sequence of calls to objects that have a recursive version of the
method, but that eventually call the method on an object of a different sub-
type that has a non-recursive version of the method. Usually this situation
is created by using a conditional when the objects are constructed.

C. Java Library Classes

An important aspect of modern programming is the existence of extensive
libraries that supply many common classes and methods. One part of
learning the skill of programming is to learn about available libraries and
their appropriate use. For the AP Computer Science course, specific parts
of the standard Java libraries are required for both the A course and the
AB course. These are specified in the AP Java subset for the A and AB
courses (see appendices).

III. Program Analysis

We need to be able to analyze programs both from the point of view of
correctness and also to understand their efficiency for solving problems.
An important part of program analysis is the testing of programs and parts

22 apcentral.collegeboard.com

of programs. Unit testing refers to tests for small parts of programs such
as individual methods or a single class that might have a number of meth-
ods. Integration testing is the testing of larger units of a program that
are composed of several smaller units: several classes involving a large
number of methods. At the high end, integration testing refers to the test-
ing of a complete program or software system.

In order to do useful testing we cannot just randomly run programs or
pieces of programs with arbitrary data. Data for testing must be selected
to reflect a range of typical cases, including the different variations in
the data that can occur, as well as boundary cases, cases that are at the
extremes of valid data, and erroneous cases, where the code should fail,
but with appropriate error messages or exceptions. The AP Marine

Biology Simulation Case Study has many examples of testing and a
good discussion of the selection of appropriate test data.

“Debugging” refers to the discovery and correction of errors in a pro-
gram. These errors can be discovered through testing or through careful
analysis. There are three categories of errors — compile-time, run-time,
and logic errors. Compile-time errors are discovered by the compiler and
include errors in the correct formation of expressions and statements in
the programming language, i.e., syntax errors. Another type of compile
time error is a mismatch of actual with formal parameters in method
calls. Some compilers also pick up errors in logic such as uninitialized
variables.

A run-time error is an error that occurs when the program is running
and usually causes it to terminate abnormally, that is to stop running, but
may also result in a program-controlled error condition. Runtime errors
are often discovered during testing. The following are some typical run-
time errors.

• an arithmetic error such as division by zero
• an out-of-bounds array index
• an attempt to cast an object to a type that does not apply to that

object
• an attempt to access methods for a null object variable

Because many runtime errors are dependent on the data used, the con-
struction of a good set of test data is important for discovering these
errors. Some runtime errors may cause the program to “crash” (terminate
abnormally) or to enter an infinite loop or infinite recursion. These types
of errors are particularly difficult to discover.

A logic error is a flaw in the logic of a program. The program runs and
produces output, but because the logic of the computation is faulty, the
output or actions of the program are sometimes incorrect. A simple exam-
ple would be a method that is intended to return the maximum from a set

apcentral.collegeboard.com 23

of values, but because of an incorrect loop condition does not check the
last value and therefore sometimes fails. Testing with data for which the
correct result is already known is an important technique for uncovering
logic errors.

Some of the techniques for finding and correcting errors, for “debug-
ging” a program or segment of a program, include hand-tracing code,
adding extra output statements to trace the execution of a program, or
using a debugger to provide information about the program as it runs and
when it crashes. Students should be encouraged to experiment with avail-
able debugging facilities. However, these will not be tested since they vary
from system to system.

Students should be able to read and modify code for a program. They
should also be able to extend existing code by taking a given class declara-
tion and declaring a new class using inheritance to add or change the
given class’ functionality. The AP Marine Biology Simulation Case Study

contains examples of using inheritance to create new classes.
A common way of handling error conditions that are anticipated in pro-

grams is to use exceptions. An exception signals an error in a program.
Students in the APCS A course should understand runtime exceptions —
exceptions that need not be “caught” and that cause the program to stop.
Here are some common runtime exceptions in Java:

• NullPointerException, indicating an attempt to reference an
object using an object variable that is null

• IllegalArgumentException, indicating an argument to a
method that is not legal for that method

• ArrayIndexOutOfBoundsException, indicating an attempt to
access an element that is not within an array’s range of indexes

• ArithmeticException, such as division by zero for integers
• ClassCastException, which occurs when an attempt is made to

cast a variable to a class that it does not match

Students in the APCS AB course should also be able to write code to
throw runtime exceptions under appropriate circumstances, such as an
IllegalArgumentException.

Formal methods enable us to reason about programs and verify that
they are correct by proof, rather than by tracing and testing. When possi-
ble, formal program verification is preferred and becomes essential for
life-critical software. Testing can only prove the existence of bugs, it can
never prove there are no bugs in software because for any useful program
there are too many possible execution paths to test.

In the AP Computer Science curriculum, we introduce some basic ideas
of formal methods. One of these is the use of preconditions and post-
conditions for methods. A precondition is an assertion that should be true

24 apcentral.collegeboard.com

when the method is called. A postcondition is an assertion that will be true
when the method completes execution, if the precondition was true when
it was called. Preconditions and postconditions form a contract that the
method should fulfill.

An assertion is a logical statement that may be true or false. In a com-
puter program an assertion made at a certain point in a program expresses
a logical condition that should be true at that point if the program is work-
ing correctly. For example, the precondition for a method is an assertion
that should be true whenever that method begins execution.

A loop invariant is an assertion that should be true every time a loop
condition is checked to determine whether another iteration of the loop
will be executed. Students in the APCS AB course should understand the
use of loop invariants for showing that loops do the intended calculation.
By combining a loop invariant with the exit condition for a loop, it is possi-
ble to prove what the loop does. By using loop invariants one can often
prove that a method that uses these loops satisfies the precondition and
postcondition contract: if the precondition is true, then the postcondition
is true. This is a small step toward formal verification of programs that
students are likely to see in more advanced courses.

An important part of analyzing programs is the analysis of the efficiency
for a program, both in terms of the time needed for the program to exe-
cute for a given data set and in terms of the space (memory) needed. In
the APCS A course, students should be able to make informal comparisons
of running times of different pieces of code, for example by counting the
number of loop iterations needed for a computation. In the APCS AB
course students learn about asymptotic analysis of algorithms: how the
algorithms behave as the data sets get larger and larger. Asymptotic analy-
sis uses the “Big-Oh” notation to derive a bound for an algorithm’s running
time in terms of standard functions such as n, n2, log(n), etc. Students in
the AB course should understand asymptotic analysis of running times for
the worst case and average case (when it can be reasonably defined) for
standard searching and sorting algorithms. Students should also be able to
analyze a given algorithm of moderate complexity. In addition, these stu-
dents should be able to make a similar analysis of the space (memory)
needed to carry out a given algorithm.

Many programs involve numerical computations and therefore are lim-
ited by the finite representations of numbers in a computer. Students
should understand the representation of positive integers in different
bases, particularly decimal, binary, hexadecimal, and octal. They should
also understand the consequences of the finite representations of integer
and real numbers, including the limits on the magnitude of numbers repre-
sented, the imprecision of floating point computation, and round-off error.

apcentral.collegeboard.com 25

IV. Standard Data Structures

There are a number of standard data structures used in programming.
Students should understand these data structures and their appropriate
use. For the AP Computer Science A and AB courses, students need to be
able to use the standard representations of integers, real numbers and
Boolean (logical) variables. In Java these are represented as follows:

• int, a 32-bit signed integer representation;
• double, a 64-bit floating point representation of real numbers;
• boolean, a Boolean value that may be true or false

The other primitive types in Java, char and float, are not part of the AP
Java subset, but may be useful in an APCS course.

Classes enable us to define new types that encapsulate both data and
operations (methods). A class may be used to declare a simple container
for related data (a record) with the associated accessor methods. A simple
example from the AP Marine Biology Simulation Case Study is the class
Location. Location encapsulates two integer values representing the
coordinates of a position in a two-dimensional grid. These coordinates
are then accessed by the methods row() and col(), as well as a
toString() method that returns a string representation of the
Location.

A class may also be used to define a more complex object that contains
information (its state) and has complex behavior defined by its methods
that can change that state and interact with other objects. An example of
such a class is the Fish class from the AP Marine Biology Simulation

Case Study. An instance of Fish has state that includes its Color and
Location, and has behaviors defined by the act method and subsidiary
methods that can change that state. Indeed, an object-oriented program is
built from such interacting classes. Students in both the APCS A and AB
courses must be able to work with the data structures defined by classes.

Students are responsible for understanding the Java String class.
Instances of the String class represent strings of characters. Although
strings are objects, the binary operator � can be applied to strings, and
returns the concatenation of the two string arguments. Other methods
that apply to the String class are given in the AP Java subset (see
appendices).

26 apcentral.collegeboard.com

There are several data structures that collect homogeneous items into
a list. The most fundamental is a one-dimensional array. Students in the
APCS A course should be comfortable working with one-dimensional
arrays and should be familiar with two representations for them. The first
is a built-in Java array, declared as follows:

int[] intArray � new int[10];

The above declaration will create a new array of ten integers and assign it
to the variable intArray. Any type of array, including a user defined
class, could be declared. For example, the following statement declares
an array of numFish Fish (from the AP Marine Biology Simulation

Case Study)

Fish[] fishList � new Fish[numFish];

Once created, a Java array has fixed size (given by the public constant for
the object, length). In this regard a Java array is like a primitive array in
other languages such as Pascal or C/C��. However, a Java array is an
object, which means an array variable is a reference to the array. In gen-
eral, a Java array is appropriate when the list of items is fixed in size.

Java has a second data structure that represents a one-dimensional
array, the class ArrayList from the java.util package (library).
An ArrayList is a structure that can be accessed by index, as can an
array. However, an ArrayList is dynamic, its size can change. In fact, the
method add with just an object parameter will append the given object to
the ArrayList, adjusting its size as needed. An ArrayList stores
references to instances of an Object — that is, any object. It cannot be
given a specific type. Consequently, when an item is accessed from an
ArrayList it must usually be downcast to the specific type that is needed
to access its methods. An ArrayList also does not use the bracket nota-
tion, but instead is accessed using the get, set and add methods.

Students in both the APCS A and AB courses should be familiar with
both Java arrays and the structure ArrayList. They should be able to
use either in a program and should be able to select the most appropriate
one for a given application. The methods for ArrayList for which stu-
dents are responsible are specified in the AP Java subset (see appendices).

apcentral.collegeboard.com 27

The APCS AB course has a major focus on abstract data types and data
structures. Consequently, there are several additional data structures that
these students must understand. The following abstract data types should
be covered in the APCS AB course:

• Lists
• Stacks
• Queues
• Priority Queues
• Sets
• Maps

There are a number of data structures that can be used to implement these
abstractions. They include, of course, the one-dimensional arrays that are
part of the APCS A course. Other fundamental data structures are the
following:

• two-dimensional arrays;
• linked lists, including singly, doubly, and circular;
• trees, including binary trees;
• heaps (and their standard array implementation)
• hash tables

Students should be able to implement the abstract data types with appro-
priate data structures.

In addition, many implementations of abstract data types are given as
part of the Java libraries. Those that students are required to understand
are specified in the AP Java subsets for the A and AB courses. These
include ArrayList for the A course and the following for the AB course:

• List interface
• LinkedList
• Set interface
• HashSet
• TreeSet
• Map interface
• HashMap
• TreeMap
• Iterator interface
• ListIterator interface

28 apcentral.collegeboard.com

These are all found in the java.util package.
The Java library structures ArrayList, LinkedList, HashSet,

TreeSet, HashMap, and TreeMap which implement the data types List,
Set, and Map, all have specifications about their runtime in the standard
documentation. For example, the documentation specifies that the get
and set operations for an ArrayList can be done in constant time. On
the other hand, the documentation indicates that the operations for
LinkedList take time for a doubly linked list implementation, so a set
operation would take O(n) for a list of n items in the worst case. Students
should understand these time estimates so that they can estimate the
asymptotic time for operations involving these data structures.

The following is a list of some useful information that can be found in
the Java documentation:

1. Adding an item to the end of an ArrayList takes O(1) time. Adding
one item to the front of an ArrayList of size n is O(n).

2. LinkedList is implemented as a doubly linked list with head and tail
links. Searches for the kth item in the list start at the end of the list that
is closer.

3. TreeSets and TreeMaps are implemented as balanced binary
trees, so add, contains, and remove for TreeSet and
put, get, and containsKey for TreeMap are all O(log n)
worst-case.

4. Operations on HashSet and HashMap are O(1) expected time, but
could be O(n) worst-case time

5. Iterator and ListIterator for List return the elements in the
order they appear in the list.

6. Items inserted in TreeSet and keys inserted in TreeMap must be
Comparable (in the AP Java subset).

7. Iterator for TreeSet returns the elements in the order specified by
compareTo.

8. Iterator for HashSet returns elements in an arbitrary order.

9. An Iterator or ListIterator can iterate through all elements in a
collection in O(n) time. For a HashSet, n is the maximum size the
HashSet has ever been; for other Collection classes, n is the current
size. For a TreeSet iterator, the first call to next() takes O(log n)
time.

apcentral.collegeboard.com 29

See the AP Java subset for details, including the methods that students are
required to know. Note there are three interfaces that will be used to ask
questions about the stack, queue, and priority queue data types called
Stack, Queue, and PriorityQueue, respectively. These are supplied for
the APCS course so as to have a consistent set of methods for testing
these concepts. AB students should know that some classes implement
some interfaces (e.g., LinkedList implements List).

V. Standard Algorithms

Both the APCS A and AB courses cover several standard algorithms. These
serve as good solutions to standard problems. These algorithms, many of
which are intertwined with data structures, provide excellent examples for
the analysis of program efficiency. Programs implementing standard algo-
rithms also serve as good models for program design.

The A course includes standard algorithms for accessing arrays includ-
ing traversing an array, inserting into and deleting from an array. Students
should also know the two standard searches, sequential search and binary
search, and the relative efficiency of each. Finally, there are three standard
sorts that are required for the A course, the two most common quadratic
sorts — Selection sort and Insertion sort — and the more efficient Merge
sort. Of course, the latter implies that students should know the merge
algorithm for sorted lists.

Students in the APCS A course are not required to know the asymptotic
(Big-Oh) analysis of these algorithms, but they should understand that
merge sort is advantageous for large data sets and should be familiar with
the differences between selection and insertion sort.

An important part of the APCS AB course is the understanding and
analysis of algorithms associated with the standard data structures. These
include traversing the structures so as to access all elements, and adding
and removing elements from the structures. Iterators are an abstraction
of the process of traversing a structure. Java has both Iterator and
ListIterator interfaces that provide this abstraction, and students
should be familiar with their use.

In addition to the searching and sorting algorithms listed for the APCS
A course, students in the AB course should also understand Quicksort and
Heapsort. For all these standard algorithms, students in the AB course
should understand the asymptotic complexity.

A hash table provides a structure for which each insertion and search
operation can be carried out in constant time. Students in the AB course
should understand hash tables, as well as being able to use the Java library
implementations HashSet and HashMap.

30 apcentral.collegeboard.com

VI. Computing in Context

Students should learn about the main hardware components of a computer
system. A detailed study of hardware and how it interfaces with software
goes beyond the bound of APCS, but students should be familiar with
processors, the hierarchy of primary and secondary memory, and the
peripheral devices that are used for communications with a computer
(keyboard, mouse, screen, printer), for communications among computers
(network connections, modems), and for off-line data storage and retrieval
(floppy disk, CD). Students will normally become familiar with these
through the use of their own systems for programming and other
applications.

The APCS course should include discussion on how the main software

components of a system enable the user to interact with the computer.
Programs in a high level language, such as the one used for the APCS
course, must be translated into machine executable code. These language
translators can be interpreters, which translate and execute code one line
at a time, or compilers, which translate whole programs or program com-
ponents into a separate file of machine-executable code. The latter enables
separate compilation (separately compiling components of a larger pro-
gram), and also facilitates optimization of code. Separate compilation
makes it possible to build libraries of precompiled modules that can be
reused in many programs.

Java is a hybrid relative to language translation. It was developed to
make transmitting programs between computers easier and to make it pos-
sible to run the same code on different types of computers. When we com-
pile a Java class — it is always compiled one class at a time — we produce
a class file that contains “Java byte code.” This Java byte code is machine
independent, so to run it we must have a “Java Virtual Machine” (JVM).
The JVM interprets the code on whatever machine is being used. There are
JVMs for many machines so that the same Java byte code can be run on all
these machines. Some JVMs go one step further and incorporate some
compiler technology into their translation process so as to speed up exe-
cution, but these details need not concern us here.

Operating Systems mediate between the computer user and the
hardware. An operating system provides the code that (1) enables the
user to interact with the computer through various peripheral devices,
(2) manages the file system for the storage of programs and data files,
and (3) manages the interaction of the user with various application
programs, including the programming environment, compiler, JVM,
and their own programs.

apcentral.collegeboard.com 31

Students should be familiar with the basic computer systems that can be
used. These include single-user or stand-alone systems (such as a personal
computer, or a larger special-purpose machine with no connections to other
machines) and computer networks, where many machines are intercon-
nected and certain machines may provide different services (such as file
storage, computational resources, or printing) to other machines on the net-
work. Of course many computers are connected to the Internet, so students
should be familiar with the benefits and pitfalls of working on the Internet.

Given the tremendous impact computers and computing have on almost
every aspect of society, it is important that intelligent and responsible atti-
tudes about the use of computers be developed as early as possible. The
applications of computing that are studied in an APCS course provide
opportunities to discuss the impact of computing. Typical issues include:

• the impact of applications using databases, particularly over the
Internet, on an individual’s right to privacy,

• the economic and legal impact of viruses and other malicious
attacks on computer systems,

• the need for fault-tolerant and highly reliable systems for life-
critical applications and the resulting need for software engineering
standards,

• the intellectual property rights of writers, musicians, computer pro-
grammers, and fair use of intellectual property

Attitudes are acquired, not taught. Hence, references to responsible use of
computer systems should be integrated into an APCS course wherever
appropriate, rather than taught as a separate unit. Participating in an APCS
course provides an opportunity to discuss such issues as the responsible
use of a system and respect for the rights and property of others. Students
should learn to take responsibility for the programs they write and for the
consequences of the use of their programs.

Case Studies

A case study is a document that includes the statement of a problem, one
or more programs that solve the problem, and a written description of one
expert’s path from problem statement to solution program(s). The write-up
describes the choices made for design and implementation and the justifi-
cation for the choices that were made.

Case studies provide a vehicle for presenting many of the topics of the
AP Computer Science courses. They provide examples of good style, pro-

32 apcentral.collegeboard.com

gramming language constructs, fundamental data structures, algorithms,
and applications. Large programs give the student practice in the manage-
ment of complexity and motivate the use of certain programming practices
(including decomposition into classes, use of inheritance and interfaces,
message passing between interacting objects, and selection of data struc-
tures tailored to the needs of the classes) in a much more complete way
than do small programs.

Case studies also allow the teacher to show concretely the design and
implementation decisions leading to the solution of a problem and thus to
focus more effectively on those aspects of the programming process. This
approach gives the student a model of the programming process as well as
a model program. The use of case studies also gives the student a context
for seeing the importance of good design when a program is to be modified.

The AP Computer Science Examinations will include questions based
on the case study described in the document AP Marine Biology

Simulation Case Study. These questions may explore design choices,
alternative choices of data structures, extending a class via inheritance,
etc., in the context of a large program without requiring large amounts of
reading during the exam. Both the A and AB examinations will contain at
least five multiple-choice questions and one free-response question cover-
ing material from the case study. Printed excerpts from the case study
programs will accompany the examinations.

Questions will deal with activities such as the following:

a. modifying the procedural and data organization of the case study pro-
gram to correspond to changes in the program specification;

b. extending the case study program by writing new code (including new
methods for existing classes, new subclasses extending existing
classes, and new classes);

c. evaluating alternatives in the representation and design of objects and
classes;

d. evaluating alternative incremental development strategies;
e. understanding how the objects/classes of the program interact; and
f. developing test data.

Sample questions for the AP Marine Simulation Biology Case Study

appear in the teacher’s manual. The text and code for the AP Marine

Biology Simulation Case Study are available for downloading from
AP Central.

apcentral.collegeboard.com 33

The Examinations

The AP Examinations for Computer Science A and Computer Science AB
are each three hours long and seek to determine how well students have
mastered the concepts and techniques contained in the respective course
outlines. Before the examination date, students must decide which of the
two examinations they will take. In most cases, students will prepare dur-
ing the year for one examination or the other. Some students enrolled in
the AB course, however, may not feel comfortable with some of its more
advanced topics. Such students might prefer to take the Computer Science
A examination.

Each examination consists of two sections: a multiple-choice section
(40 questions in 1 hour and 15 minutes), which tests proficiency in a wide
variety of topics, and a free-response section (4 questions in 1 hour and
45 minutes), which requires the student to demonstrate the ability to solve
problems involving more extended reasoning.

The multiple-choice and the free-response section of both AP Computer
Science Examinations require students to demonstrate their ability to
design, write, analyze, and document programs and subprograms.

Minor points of syntax are not tested on the examinations. All code
given in the exams is consistent with the AP Java subset. All student
responses involving code must be written in Java. Students are expected
to be familiar with and able to use the standard Java classes listed in the
AP Java subset. For both the multiple-choice and the free-response sec-
tions of the examinations, a quick reference to both the case study and the
classes in the AP Java subset will be provided.

In the determination of the grade for each examination, the multiple-
choice section and the free-response section are given equal weight.
Because each examination is designed for full coverage of the subject
matter, it is not expected that many students will be able to correctly
answer all the questions in either the multiple-choice section or the free-
response section.

34 apcentral.collegeboard.com

Computer Science A: Sample Multiple-Choice Questions

Following is a representative set of questions. Questions marked with an
asterisk are also representative of AB examination questions. The answer
key for the Computer Science A multiple-choice questions is on page 59.
In this section of the examination, as a correction for haphazard guessing,
one-fourth of the number of questions answered incorrectly will be sub-
tracted from the number of questions answered correctly. The AP
Computer Science A Examination will include at least five multiple-choice
questions based on the AP Marine Biology Simulation Case Study. (See
the teacher’s manual for the AP Marine Biology Simulation Case Study

for examples.)

Directions: Determine the answer to each of the following questions or
incomplete statements, using the available space for any necessary
scratchwork. Then decide which is the best of the choices given and fill in
the corresponding oval on the answer sheet. No credit will be given for
anything written in the examination booklet. Do not spend too much time
on any one problem.

Notes:

• Assume that the classes listed in the Quick Reference sheet have been
imported where appropriate. A Quick Reference to the AP Java classes
is included as part of the exam.

• Assume that declarations of variables and methods appear within the
context of an enclosing class.

• Assume that method calls that are not prefixed with an object or class
name appear within the context of the class in which the method is
declared.

• Unless otherwise noted in the question, assume that parameters in
method calls are not null.

apcentral.collegeboard.com 35

Sample Questions for Computer Science A

1. Consider the following code segment.

for (int k � 0; k � 20; k � k � 2)
{
if (k % 3 �� 1)
System.out.print(k � " ");

}

What is printed as a result of executing the code segment?

(A) 4 16
(B) 4 10 16
(C) 0 6 12 18
(D) 1 4 7 10 13 16 19
(E) 0 2 4 6 8 10 12 14 16 18

2. Consider the following code segment.

ArrayList list � new ArrayList();

list.add(new Integer(1));
list.add(new Integer(2));
list.add(new Integer(3));
list.set(2, new Integer(4));
list.add(2, new Integer(5));
list.add(new Integer(6));
System.out.println(list);

What is printed as a result of executing the code segment?

(A) [1, 2, 3, 4, 5]
(B) [1, 2, 4, 5, 6]
(C) [1, 2, 5, 4, 6]
(D) [1, 5, 2, 4, 6]
(E) [1, 5, 4, 3, 6]

36 apcentral.collegeboard.com

Sample Questions for Computer Science A

*3. Consider the following data field and method.

private ArrayList nums;

// precondition: nums.size() � 0;
// nums contains Integer objects
public void numQuest()
{
int k � 0;
Integer zero � new Integer(0);

while (k � nums.size())
{

if (nums.get(k).equals(zero))
nums.remove(k);

k��;
}

}

Assume that ArrayList nums initially contains the following
Integer values.

[0, 0, 4, 2, 5, 0, 3, 0]

What will ArrayList nums contain as a result of executing
numQuest ?

(A) [0, 0, 4, 2, 5, 0, 3, 0]
(B) [4, 2, 5, 3]
(C) [0, 0, 0, 0, 4, 2, 5, 3]
(D) [3, 5, 2, 4, 0, 0, 0, 0]
(E) [0, 4, 2, 5, 3]

apcentral.collegeboard.com 37

Sample Questions for Computer Science A

4. Consider the following declaration for a class that will be used to repre-
sent points in the xy-coordinate plane.

public class Point
{

private int myX; // coordinates
private int myY;

public Point()
{

myX � 0;
myY � 0;

}

public Point(int a, int b)
{

myX � a;
myY � b;

}

// ... other methods not shown
}

The following incomplete class declaration is intended to extend the
above class so that two-dimensional points can be named.

public class NamedPoint extends Point
{

private String myName;

// constructors go here

// ... other methods not shown
}

38 apcentral.collegeboard.com

Sample Questions for Computer Science A

Consider the following proposed constructors for this class.

III. public NamedPoint()
{

myName � "";
}

III. public NamedPoint(int d1, int d2, String name)
{

myX � d1;
myY � d2;
myName � name;

}

III. public NamedPoint(int d1, int d2, String name)
{

super(d1, d2);
myName � name;

}

Which of these constructors would be legal for the NamedPoint class?

(A) I only
(B) II only
(C) III only
(D) I and III
(E) II and III

apcentral.collegeboard.com 39

Sample Questions for Computer Science A

5. Consider the following output.

1 1 1 1 1
2 2 2 2
3 3 3
4 4
5

Which of the following code segments will produce this output?

(A) for (int j � 1; j �� 5; j��)
{
for (int k � 1; k �� 5; k��)
{

System.out.print(j � " ");
}
System.out.println();

}

(B) for (int j � 1; j �� 5; j��)
{
for (int k � 1; k �� j; k��)
{

System.out.print(j � " ");
}
System.out.println();

}

(C) for (int j � 1; j �� 5; j��)
{
for (int k � 5; k �� 1; k—)
{

System.out.print(j � " ");
}
System.out.println();

}

40 apcentral.collegeboard.com

Sample Questions for Computer Science A

(D) for (int j � 1; j �� 5; j��)
{
for (int k � 5; k �� j; k—)
{

System.out.print(j � " ");
}
System.out.println();

}

(E) for (int j � 1; j �� 5; j��)
{
for (int k � j; k �� 5; k��)
{

System.out.print(k � " ");
}
System.out.println();

}

apcentral.collegeboard.com 41

Sample Questions for Computer Science A

6. A car dealership needs a program to store information about the cars
for sale. For each car, they want to keep track of the following informa-
tion: number of doors (2 or 4), whether the car has air conditioning, and
its average number of miles per gallon. Which of the following is the
best design?

(A) Use one class, Car, which has three data fields:
int numDoors, boolean hasAir, and
double milesPerGallon.

(B) Use four unrelated classes: Car, Doors, AirConditioning, and
MilesPerGallon.

(C) Use a class Car which has three subclasses: Doors,
AirConditioning, and MilesPerGallon.

(D) Use a class Car, which has a subclass Doors, with a subclass
AirConditioning, with a subclass MilesPerGallon.

(E) Use three classes: Doors, AirConditioning, and
MilesPerGallon, each with a subclass Car.

42 apcentral.collegeboard.com

Sample Questions for Computer Science A

7. Consider the following class declaration.

public class SomeClass implements Comparable
{
// ... other methods not shown

}

Which of the following method signatures of compareTo will satisfy
the Comparable interface requirement?

III. public int compareTo(Object other)
III. public int compareTo(SomeClass other)
III. public boolean compareTo(Object other)

(A) I only
(B) II only
(C) III only
(D) I and II only
(E) I, II, and III

apcentral.collegeboard.com 43

Sample Questions for Computer Science A

Questions 8 – 9 refer to the following incomplete class declaration.

public class TimeRecord
{

private int hours;
private int minutes; // 0��minutes�60

public TimeRecord(int h, int m)
{

hours � h;
minutes � m;

}

// postcondition: returns the
// number of hours
public int getHours()
{ /* implementation not shown */ }

// postcondition: returns the number
// of minutes; 0 �� minutes � 60
public int getMinutes()
{ /* implementation not shown */ }

// precondition: h �� 0; m �� 0
// postcondition: adds h hours and
// m minutes to this TimeRecord
public void advance(int h, int m)
{

hours � hours � h;
minutes � minutes � m;

/* missing code */
}

// ... other methods not shown

}

44 apcentral.collegeboard.com

Sample Questions for Computer Science A

8. Which of the following can be used to replace
/* missing code */ so that advance
will correctly update the time?

(A) minutes � minutes % 60;

(B) minutes � minutes � hours % 60;

(C) hours � hours � minutes / 60;
minutes � minutes % 60;

(D) hours � hours � minutes % 60;
minutes � minutes / 60;

(E) hours � hours � minutes / 60;

apcentral.collegeboard.com 45

Sample Questions for Computer Science A

9. Consider the following declaration that appears in a client program.

TimeRecord[] timeCards � new TimeRecord[100];

Assume that timeCards has been initialized with TimeRecord
objects. Consider the following code segment that is intended to com-
pute the total of all the times stored in timeCards.

TimeRecord total � new TimeRecord(0,0);

for (int k � 0; k � timeCards.length; k��)
{
/* missing expression */ ;

}

Which of the following can be used to replace
/* missing expression */ so that the code segment will work as
intended?

(A) timeCards[k].advance()

(B) total �� timeCards[k].advance()

(C) total.advance(timeCards[k].hours,
timeCards[k].minutes)

(D) total.advance(timeCards[k].getHours(),
timeCards[k].getMinutes())

(E) timeCards[k].advance(timeCards[k].getHours(),
timeCards[k].getMinutes())

46 apcentral.collegeboard.com

Sample Questions for Computer Science A

*10. Consider the following incomplete method, calcTotal, which is
intended to return the sum of all the integer values represented by the
elements in the ArrayList list of Integer objects.

public int calcTotal(ArrayList list)
{
int total � 0;

for (int index � 0;
index � list.size(); index��)

{
/* missing code */

}

return total;
}

Which of the following can be used to replace
/* missing code */ so that calcTotal will work as intended?

III. total �� list.get(index);
III. total �� (Integer) list.get(index);
III. total �� ((Integer) list.get(index)).intValue();

(A) I only
(B) II only
(C) III only
(D) I and II
(E) II and III

apcentral.collegeboard.com 47

Sample Questions for Computer Science A

Questions 11 – 12 refer to the following information.

Consider the following data field and method findLongest with line
numbers added for reference. Method findLongest is intended to
find the longest consecutive block of the value target occurring in
the array nums; however, findLongest does not work as intended.

For example, if the array nums contains the values
[7, 10, 10, 15, 15, 15, 15, 10, 10, 10, 15, 10, 10],
the call findLongest(nums, 10) should return 3, the length of
the longest consecutive block of 10’s.

private int[] nums;

public int findLongest(int target)
{
int lenCount � 0;
int maxLen � 0;

Line 1: for (int k � 0; k � nums.length; k��)
Line 2: {
Line 3: if (nums[k] �� target)
Line 4: {
Line 5: lenCount��;
Line 6: }
Line 7: else
Line 8: {
Line 9: if (lenCount � maxLen)
Line 10: {
Line 11: maxLen � lenCount;
Line 12: }
Line 13: }
Line 14: }
Line 15: if (lenCount � maxLen)
Line 16: {
Line 17: maxLen � lenCount;
Line 18: }
Line 19: return maxLen;

}

48 apcentral.collegeboard.com

Sample Questions for Computer Science A

*11. The method findLongest does not work as intended.
Which of the following best describes the value returned by a
call to findLongest ?

(A) It is the length of the shortest consecutive block of the value
target in nums.

(B) It is the length of the array nums.

(C) It is the number of occurrences of the value target in nums.

(D) It is the length of the first consecutive block of the value target
in nums.

(E) It is the length of the last consecutive block of the value target
in nums.

*12. Which of the following changes should be made so that method
findLongest will work as intended?

(A) Insert the statement lenCount � 0;
between lines 2 and 3.

(B) Insert the statement lenCount � 0;
between lines 8 and 9.

(C) Insert the statement lenCount � 0;
between lines 10 and 11.

(D) Insert the statement lenCount � 0;
between lines 11 and 12.

(E) Insert the statement lenCount � 0;
between lines 12 and 13.

apcentral.collegeboard.com 49

Sample Questions for Computer Science A

*13. Consider the following data field and method.

private int[] myStuff;

// precondition: myStuff contains
// integers in no particular order
public int mystery(int num)
{
for (int k � myStuff.length - 1; k �� 0; k--)
{
if (myStuff[k] � num)
{
return k;

}
}

return -1;
}

Which of the following best describes the contents of myStuff after
the following statement has been executed?

int m � mystery(n);

(A) All values in positions 0 through m are less than n.

(B) All values in positions m�1 through myStuff.length-1 are
less than n.

(C) All values in positions m�1 through myStuff.length-1 are
greater than or equal to n.

(D) The smallest value is at position m.

(E) The largest value that is smaller than n is at position m.

50 apcentral.collegeboard.com

Sample Questions for Computer Science A

14. Consider the following method.

// precondition: x �� 0
public void mystery(int x)
{
System.out.print(x % 10);

if ((x / 10) !� 0)
{
mystery(x / 10);

}

System.out.print(x % 10);
}

Which of the following is printed as a result of the call
mystery(1234) ?

(A) 1441
(B) 3443
(C) 12344321
(D) 43211234
(E) Many digits are printed due to infinite recursion.

apcentral.collegeboard.com 51

Sample Questions for Computer Science A

15. Consider the following two classes.

public class Base
{

public void methodOne()
{

System.out.print("A");
methodTwo();

}

public void methodTwo()
{

System.out.print("B");
}

}

public class Derived extends Base
{

public void methodOne()
{

super.methodOne();
System.out.print("C");

}

public void methodTwo()
{

super.methodTwo();
System.out.print("D");

}
}

52 apcentral.collegeboard.com

Sample Questions for Computer Science A

Assume that the following declaration appears in a client program.

Base b � new Derived();

What is printed as a result of the call b.methodOne() ?

(A) AB
(B) ABC
(C) ABCD
(D) ABDC
(E) Nothing is printed due to infinite recursion.

*16. Consider the following declarations.

Integer valueOne, valueTwo;

Assume that valueOne and valueTwo have been properly initial-
ized. Which of the following is equivalent to the expression below?

valueOne.intValue() �� valueTwo.intValue()

(A) valueOne �� valueTwo
(B) valueOne.compareTo(valueTwo)
(C) valueOne.equals(valueTwo) �� 0
(D) valueOne.compareTo(valueTwo) �� 0
(E) valueOne.intValue().equals(valueTwo.intValue())

apcentral.collegeboard.com 53

Sample Questions for Computer Science A

*17. Consider the following recursive method.

public static int mystery(int n)
{
if (n �� 0)
return 1;

else
return 3 * mystery(n - 1);

}

What value is returned as a result of the call mystery(5) ?

(A) 0
(B) 3
(C) 81
(D) 243
(E) 6561

54 apcentral.collegeboard.com

Sample Questions for Computer Science A

*18. Consider the following data field and method.

private int[] arr;

// precondition: arr.length � 0
public int checkArray()
{
int loc � arr.length / 2;

for (int k � 0; k � arr.length; k��)
{
if (arr[k] � arr[loc])
loc � k;

}

return loc;
}

Which of the following is the best postcondition for checkArray ?

(A) Returns the index of the first element in array arr whose value
is greater than arr[loc]

(B) Returns the index of the last element in array arr whose value is
greater than arr[loc]

(C) Returns the largest value in array arr

(D) Returns the index of the largest value in array arr

(E) Returns the index of the largest value in the second half of array
arr

apcentral.collegeboard.com 55

Sample Questions for Computer Science A

*19. Consider the following data field and method.

private int[] arr;

// precondition: arr contains no duplicates,
// the elements in arr are in sorted order,
// 0 � low � arr.length;
// low - 1 � high � arr.length
public int mystery(int low, int high, int num)
{

int mid � (low � high) / 2;

if (low � high)
{

return low;
}
else if (arr[mid] � num)
{

return mystery(mid � 1, high, num);
}
else if (arr[mid] � num)
{

return mystery(low, mid - 1, num);
}
else // arr[mid] �� num
{

return mid;
}

}

What is returned by the call
mystery(0, arr.length - 1, num) ?

(A) The number of elements in arr that are less than num

(B) The number of elements in arr that are less than or equal to num

(C) The number of elements in arr that are equal to num

(D) The number of elements in arr that are greater than num

(E) The index of the middle element in arr

56 apcentral.collegeboard.com

Sample Questions for Computer Science A

20. Assume the following declarations have been made.

private String s;
private int n;

public void changer(String x, int y)
{
x � x � "peace";
y � y * 2;

}

Assume s has the value "world" and n is 6. What are the values of s
and n after the call changer(s, n) ?

s n

(A) world 6

(B) worldpeace 6

(C) world 12

(D) worldpeace 12

(E) peace 12

apcentral.collegeboard.com 57

Sample Questions for Computer Science A

21. At a certain high school students receive letter grades based on the
following scale.

Numeric Score Letter Grade

93 or above A

From 84 to 92 inclusive B

From 75 to 83 inclusive C

Below 75 F

Which of the following code segments will assign the correct string to
grade for a given integer score ?

III. if (score �� 93)
grade � "A";

if (score �� 84 && score �� 92)
grade � "B";

if (score �� 75 && score �� 83)
grade � "C";

if (score � 75)
grade � "F";

III. if (score �� 93)
grade � "A";

if (84 �� score �� 92)
grade � "B";

if (75 �� score �� 83)
grade � "C";

if (score � 75)
grade � "F";

III. if (score �� 93)
grade � "A";

else if (score �� 84)
grade � "B";

else if (score �� 75)
grade � "C";

else
grade � "F";

58 apcentral.collegeboard.com

Sample Questions for Computer Science A

(A) II only
(B) III only
(C) I and II only
(D) I and III only
(E) I, II, and III

Answers to Computer Science A Multiple-Choice Questions

1 – B 4 – D 7 – A 10 – C 13 – C 16 – D 19 – A
2 – C 5 – D 8 – C 11 – C 14 – D 17 – D 20 – A
3 – E 6 – A 9 – D 12 – E 15 – D 18 – D 21 – D

apcentral.collegeboard.com 59

Sample Questions for Computer Science A

Sample Free-Response Questions

Following is a representative set of questions. Questions marked with an
asterisk are also representative of AB examination questions. The AP
Computer Science A Examination will include one free-response question
based on the AP Marine Biology Simulation Case Study. (See the
teacher’s manual for the AP Marine Biology Simulation Case Study

for examples.)

Directions: SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM
SEGMENTS ARE TO BE WRITTEN IN JAVA.

Notes:

• Assume that the classes listed in the Quick Reference sheet have been
imported where appropriate. A Quick Reference to the AP Java classes
is included as part of the exam.

• Assume that declarations of variables and methods appear within the
context of an enclosing class.

• Assume that method calls that are not prefixed with an object or class
name appear within the context of the class in which the method is
declared.

• Unless otherwise noted in the question, assume that parameters in
method calls are not null.

• Unless otherwise noted, assume that methods are called only when
their preconditions are satisfied.

60 apcentral.collegeboard.com

Sample Questions for Computer Science A

1. In an instant runoff election there are two or more candidates and there
are many voters. Each voter votes by submitting a ballot that is an
ordered list of all the candidates, where the first name listed is the
voter’s first choice, the second name is the voter’s second choice, and
so on. There are no ties allowed on a voter’s ballot.

The election is decided by the following process.

• Initially, all candidates are placed on the current candidate list.

• As long as there are two or more candidates on the current candidate
list, the following steps are repeated.

1. Each ballot is examined for candidates on the current candidate
list and a vote is counted for the current candidate that appears
earliest in the list of names on the ballot. (On the first pass, this
will be the first name on the ballot. In subsequent passes, it might
not be the first name on the ballot. See the illustrations below.)

2. The candidate(s) with the fewest votes is (are) eliminated from
the current candidate list.

• The last remaining candidate is the winner. If there is none, the elec-
tion is not decisive.

For example, suppose there are four candidates in the election: Chris,
Jamie, Pat, and Sandy. Each ballot has these four names listed in order
of the voter’s preference, with the first choice appearing first in the list.
Assume that seven ballots were submitted as shown in the following
table.

apcentral.collegeboard.com 61

Sample Questions for Computer Science A

Current Candidate List: Chris, Jamie, Pat, Sandy

First Choice from Current

Voter Ballot Candidate List

0 Chris, Jamie, Pat, Sandy Chris

1 Chris, Pat, Sandy, Jamie Chris

2 Chris, Sandy, Pat, Jamie Chris

3 Pat, Jamie, Sandy, Chris Pat

4 Pat, Sandy, Chris, Jamie Pat

5 Sandy, Pat, Jamie, Chris Sandy

6 Jamie, Sandy, Pat, Chris Jamie

In the first pass, Chris has 3 votes, Pat has 2 votes, Sandy has 1 vote, and
Jamie has 1 vote. Jamie and Sandy are tied for the fewest votes; so both
are eliminated, leaving Chris and Pat on the current candidate list. Voter
preferences for these two candidates are shown in the following table.

62 apcentral.collegeboard.com

Sample Questions for Computer Science A

Current Candidate List: Chris, Pat

First Choice from Current

Voter Ballot Candidate List

0 Chris, Jamie, Pat, Sandy Chris

1 Chris, Pat, Sandy, Jamie Chris

2 Chris, Sandy, Pat, Jamie Chris

3 Pat, Jamie, Sandy, Chris Pat

4 Pat, Sandy, Chris, Jamie Pat

5 Sandy, Pat, Jamie, Chris Pat

6 Jamie, Sandy, Pat, Chris Pat

In the second pass, Chris has 3 votes and Pat has 4 votes. Chris has fewest
votes and is eliminated. Pat is the only remaining candidate and is there-
fore the winner of the election.

apcentral.collegeboard.com 63

Sample Questions for Computer Science A

A ballot is modeled with the following partial class declaration.

public class Ballot
{
// postcondition: returns the first
// choice candidate for this Ballot
// from those on the candidateList
public String firstChoiceFrom(

ArrayList candidateList)
{ /* code not shown */ }

// ... constructors, other methods,
// and private data not shown

}

The Ballot method firstChoiceFrom returns the name of the candi-
date from candidateList that appears first on this ballot.

The set of ballots for all voters in an election is modeled with the follow-
ing partial class declaration.

public class VoterBallots
{

private ArrayList ballotList;
// each entry is an instance of Ballot
// representing one voter’s ballot

// precondition: candidate appears in
// candidateList
// postcondition: returns the number
// of times that candidate is first
// among those on candidateList for
// elements of ballotList
private int numFirstVotes(String candidate,

ArrayList candidateList)
{ /* to be implemented in part (a) */ }

64 apcentral.collegeboard.com

Sample Questions for Computer Science A

// precondition: each String in
// candidateList appears exactly
// once in each Ballot in ballotList
// postcondition: returns a list of
// those candidates tied with the
// fewest first choice votes
public ArrayList candidatesWithFewest(

ArrayList candidateList)
{ /* to be implemented in part (b) */ }

// ... constructor(s) and other
// ... methods not shown

}

An instant runoff election is represented by the class InstantRunoff
that encapsulates the process of selecting a winner by repeatedly applying
the VoterBallots method candidatesWithFewest to a list of candi-
dates that is reduced until only the winner remains. This class is not
shown here.

(a) Write the VoterBallots method numFirstVotes. Method
numFirstVotes should return the number of times candidate
appears first, among those elements that are on candidateList,
in elements of ballotList.

Complete method numFirstVotes below.

// precondition: candidate appears in
// candidateList
// postcondition: returns the number
// of times that candidate is first
// among those on candidateList for
// elements of ballotList
private int numFirstVotes(String candidate,

ArrayList candidateList)

apcentral.collegeboard.com 65

Sample Questions for Computer Science A

(b) Write the VoterBallots method candidatesWithFewest.
Method candidatesWithFewest should count the number of times
each String in the list candidateList appears first in an element
of ballotList, and return an ArrayList of all those Strings that
are tied for the smallest count.

In writing method candidatesWithFewest you may use the
private helper method numFirstVotes specified in part (a).
Assume that numFirstVotes works as specified, regardless of
what you wrote in part (a). Solutions that reimplement functionality
provided by this method, rather than invoking it, will not receive
full credit.

Complete method candidatesWithFewest below.

// precondition: each String in
// candidateList appears exactly
// once in each Ballot in ballotList
// postcondition: returns a list of
// those candidates tied with the
// fewest first choice votes
// public ArrayList candidatesWithFewest(

ArrayList candidateList)

66 apcentral.collegeboard.com

Sample Questions for Computer Science A

2. Consider the following incomplete declaration of a LineEditor class
that allows insertions and deletions in a line of text. The line of text is
stored internally as a String. The insert operation takes a String
and inserts it into the line of text at the given index. The delete opera-
tion takes a String parameter and removes the first occurrence (if any)
of that string from the line of text. The deleteAll operation removes
all occurrences (if any) of a given String from the line of text, includ-
ing any that are formed as a result of the deletion process.

public class LineEditor
{
private String myLine;

// precondition: str is not null;
// 0 �� index �� myLine.length()
// postcondition: str has been inserted
// into myLine at position index;
// no characters from myLine have
// been overwritten
public void insert(String str, int index)
{ /* to be implemented in part (a) */ }

// precondition: str is not null
// postcondition: if str is found in
// myLine, the first occurrence
// of str has been removed from myLine;
// otherwise, myLine is left unchanged
public void delete(String str)
{ /* to be implemented in part (b) */ }

// precondition: str is not null
// postcondition: all occurrences of str
// have been removed from myLine;
// myLine is otherwise unchanged
public void deleteAll(String str)
{ /* to be implemented in part (c) */ }

apcentral.collegeboard.com 67

Sample Questions for Computer Science A

// ... constructor and other methods
// not shown

}

(a) Write the LineEditor method insert as described at the beginning
of the question. The following tables show the result of several differ-
ent calls to insert.

Method call: insert("A.P.", 0)
myLine before the call myLine after the call
"Computer Science" "A.P.Computer Science"

Method call: insert(" is best", 16)
myLine before the call myLine after the call
"Computer Science" "Computer Science is best"

Method call: insert("Java", 4)
myLine before the call myLine after the call
"Computer Science" "CompJavauter Science"

(a) Complete method insert below.

// precondition: str is not null;
// 0 �� index �� myLine.length()
// postcondition: str has been inserted
// into myLine at position index;
// no characters from myLine have
// been overwritten
public void insert(String str, int index)

68 apcentral.collegeboard.com

Sample Questions for Computer Science A

(b) Write the LineEditor method delete as described at the beginning
of the question. The following table shows the result of several differ-
ent calls to delete.

Method call: delete("Com")
myLine before the call myLine after the call
"Computer Science" "puter Science"

Method call: delete("ter Sc")
myLine before the call myLine after the call
"Computer Science" "Compuience"

Method call: delete("c")
myLine before the call myLine after the call
"Computer Science" "Computer Sience"

Method call: delete("Java")
myLine before the call myLine after the call
"Computer Science" "Computer Science"

Complete method delete below.

// precondition: str is not null
// postcondition: if str is found in
// myLine, the first occurrence
// of str has been removed from myLine;
// otherwise, myLine is left unchanged
public void delete(String str)

apcentral.collegeboard.com 69

Sample Questions for Computer Science A

(c) Write the LineEditor method deleteAll as described at the begin-
ning of the question. The following table shows the result of several
different calls to deleteAll.

Method call: deleteAll("ing")
myLine before the call myLine after the call

"string programming" "str programm"

Method call: deleteAll("r")
myLine before the call myLine after the call

"string programming" "sting pogamming"

Method call: deleteAll("aba")
myLine before the call myLine after the call

"abababa" "b"

Method call: deleteAll("oh-la")
myLine before the call myLine after the call
"ooh-lah-lah" "h"

Method call: deleteAll("zap")
myLine before the call myLine after the call

"pizza pie" "pizza pie"

70 apcentral.collegeboard.com

Sample Questions for Computer Science A

In writing deleteAll, you may call any of the methods in the
LineEditor class, including insert and delete from parts
(a) and (b). Assume that these methods work as specified, regardless
of what you wrote in parts (a) and (b). Solutions that reimplement
functionality provided by these methods, rather than invoking these
methods, will not receive full credit.

Complete method deleteAll below.

// precondition: str is not null
// postcondition: all occurrences of str
// have been removed from myLine;
// myLine is otherwise unchanged
public void deleteAll(String str)

apcentral.collegeboard.com 71

Sample Questions for Computer Science A

Note: The following question is somewhat longer than what may appear on
the AP Computer Science Examinations. In particular, a question of this
type appearing on the AP Computer Science A Exam might be limited to
two parts.

*3. Consider the problem of modeling bank accounts. A diagram of the
class hierarchy used to represent bank accounts is shown below.

The abstract class Account models a bank account with the following
data and operations.

Data

• the identity number for the account (the identity number is never
changed once the account has been constructed)

• the balance in the account (the balance can change as a result of
some operations)

72 apcentral.collegeboard.com

Sample Questions for Computer Science A

Operations

• create an account with a given identity number and initial balance
• return the identity number
• return the current balance
• deposit some positive amount into the account, increasing the

balance
• decrease the balance by a specified positive amount; if the amount is

greater than the balance, throw an IllegalArgumentException
• return the monthly interest due

An implementation for this class is shown below.

public abstract class Account
{
private int idNumber;

// identity number for this account
private double balance;

// current balance for this account

// precondition: startBal �� 0.0
// postcondition: An Account with
// identity number idNum and
// current balance of startBal
// has been created
// exceptions: If startBal � 0.0, an
// IllegalArgumentException is thrown
public Account(int idNum, double startBal)
{ /* code not shown */ }

apcentral.collegeboard.com 73

Sample Questions for Computer Science A

// postcondition: returns the identity
// number for this account
public int idNumber()
{ /* code not shown */ }

// postcondition: returns the current
// balance for this account
public double currentBalance()
{ /* code not shown */ }

// precondition: amount �� 0.0
// postcondition: the current balance of
// this account has been increased
// by amount;
// exceptions: if amount � 0.0, then
// current balance is unchanged and an
// IllegalArgumentException is thrown
public void deposit(double amount)
{ /* code not shown */ }

// precondition: 0.0 �� amount �� balance
// postcondition: the current balance of
// this account has been decreased
// by amount;
// exceptions: if amount � 0.0 or if
// amount � balance, then current
// balance is unchanged and an
// IllegalArgumentException is thrown
public void decreaseBalance(double amount)
{ /* code not shown */ }

// postcondition: returns the monthly
// interest due for this account
public abstract double monthlyInterest();

}

74 apcentral.collegeboard.com

Sample Questions for Computer Science A

(a) A savings account at a bank “is-a” bank account and is modeled by the
class SavingsAccount. A savings account has all the characteristics
of a bank account. In addition, a savings account has an interest rate,
and the interest due each month is calculated from that interest rate.
The operations for a savings account that differ from those specified
in the class Account are the following.

• create a new savings account with a given annual interest rate, as
well as the parameters required for all accounts

• withdraw a positive amount that does not exceed the current bal-
ance, decreasing the balance by the amount withdrawn

• calculate the monthly interest by multiplying the current balance by
the annual interest rate divided by twelve

Write the complete definition of the class SavingsAccount, includ-
ing the implementation of methods.

apcentral.collegeboard.com 75

Sample Questions for Computer Science A

(b) A checking account at a bank “is-a” bank account and is modeled by
the class CheckingAccount. A checking account has all the charac-
teristics of a bank account. In addition, a checking account can have
checks written on it. Each check written decreases the account by the
amount of the check plus a per-check charge. The operations for a
checking account that differ from those specified in the class
Account are the following.

• create a new checking account with a given per-check charge, as
well as the parameters required for all accounts

• clear a check for a given amount by decreasing the balance by the
amount of the check plus the per-check charge

• compute and return the monthly interest

A declaration of the class CheckingAccount is shown below.

public class CheckingAccount extends Account
{

private double checkCharge;

public CheckingAccount(int idNum,
double startBal,
double chkCharge)

{
super(idNum, startBal);
checkCharge � chkCharge;

}

public void clearCheck(double amount)
{

decreaseBalance(amount � checkCharge);
}

public double monthlyInterest()
{ /* code not shown */ }

}

76 apcentral.collegeboard.com

Sample Questions for Computer Science A

A special checking account “is-a” checking account and is modeled by the
class SpecialCheckingAccount. A special checking account has all
the characteristics of a checking account. In addition, a special checking
account has a minimum balance and an annual interest rate. When the bal-
ance is above the minimum balance, the per-check charge is not deducted
from the balance when a check is cleared. Otherwise, a check is cleared
just as it is for a checking account. In addition, when the balance is above
the minimum balance when interest is calculated, interest due is calcu-
lated on the current balance. Otherwise, the interest due is the same as for
a checking account. The operations for a special checking account that
differ from those specified in the class CheckingAccount are the
following.

• create a new special checking account with a given minimum balance
and interest rate, as well as the parameters required for a checking
account

• clear a check for a given amount according to the rules above
• calculate the monthly interest by multiplying current balance by the

annual interest rate divided by twelve if the current balance is above
the minimum; otherwise, calculate the interest as it is done for a check-
ing account

Write the complete definition of the class SpecialCheckingAccount,
including the implementation of its methods.

apcentral.collegeboard.com 77

Sample Questions for Computer Science A

(c) Consider the class Bank partially specified below.

public class Bank
{

private ArrayList accounts;
// all accounts in this bank
// accounts has no null entries

// postcondition: for each account in
// this bank, the monthly interest
// due has been deposited into
// that account
public void postMonthlyInterest()
{

// to be implemented in this part
}

// ... constructors and other methods
// not shown

}

Write the Bank method postMonthlyInterest, which is described
as follows. For each account in this bank, postMonthlyInterest
should calculate the monthly interest and deposit that amount into the
account.

In writing postMonthlyInterest, you may use any of the public
methods of class Account or its subclasses. Assume these methods
work as specified. Solutions that reimplement functionality provided
by these methods, rather than invoking these methods, will not receive
full credit.

Complete method postMonthlyInterest below.

// postcondition: for each account in
// this bank, the monthly interest
// due has been deposited into
// that account
public void postMonthlyInterest()

78 apcentral.collegeboard.com

Sample Questions for Computer Science A

Suggested Solutions to Free-Response Questions

Note: There are many correct variations of these solutions.

Question 1

(a)

private int numFirstVotes(String candidate,
ArrayList candidateList)

{
int numVotes � 0;

for (int v � 0; v � ballotList.size(); v��)
{

Ballot voterBallot �
(Ballot) ballotList.get(v);

String first �
voterBallot.firstChoiceFrom(candidateList);

if (candidate.equals(first))
numVotes��;

}
return numVotes;

}

apcentral.collegeboard.com 79

Sample Questions for Computer Science A

(b)

public ArrayList candidatesWithFewest(
ArrayList candidateList)

{
int[] votes � new int[candidateList.size()];
int minVotes � ballotList.size();

for (int c � 0; c � candidateList.size(); c��)
{

String candidate �
(String) candidateList.get(c);

votes[c] � numFirstVotes(candidate,
candidateList);

if (votes[c] � minVotes)
minVotes � votes[c];

}

ArrayList result � new ArrayList();
for (int c � 0; c � candidateList.size(); c��)
{

if (votes[c] �� minVotes)
result.add(candidateList.get(c));

}

return result;
}

80 apcentral.collegeboard.com

Sample Questions for Computer Science A

(b) Alternate solution

public ArrayList candidatesWithFewest(
ArrayList candidateList)

{
ArrayList result � new ArrayList();
int minVotes � ballotList.size() � 1;

for (int c � 0; c � candidateList.size(); c��)
{

String candidate �
(String) candidateList.get(c);

int thisVotes � numFirstVotes(candidate,
candidateList);

if (thisVotes � minVotes)
{

minVotes � thisVotes;
result � new ArrayList();

}
if (thisVotes �� minVotes)

result.add(candidateList.get(c));
}

return result;
}

apcentral.collegeboard.com 81

Sample Questions for Computer Science A

Question 2

(a)

public void insert(String str, int index)
{

myLine � myLine.substring(0, index) � str
� myLine.substring(index);

}

(b)

public void delete(String str)
{

int index � myLine.indexOf(str);

if (index !� -1)
{

myLine � myLine.substring(0, index)
� myLine.substring(index � str.length());

}
}

(c)

public void deleteAll(String str)
{

while (myLine.indexOf(str) !� -1)
{

delete(str);
}

}

82 apcentral.collegeboard.com

Sample Questions for Computer Science A

Question 3

(a)

public class SavingsAccount extends Account
{

private double intRate;
// annual interest rate for this account

public SavingsAccount(int idNum,
double balance,
double rate)

{
super(idNum, balance);
intRate � rate;

}

public void withdraw(double amount)
{

decreaseBalance(amount);
}

public double monthlyInterest()
{

return (currentBalance() * (intRate / 12.0));
}

}

apcentral.collegeboard.com 83

Sample Questions for Computer Science A

(b)

public class SpecialCheckingAccount
extends CheckingAccount

{
private double minBalance;
private double intRate;

public SpecialCheckingAccount(int idNum,
double startBal, double chkCharge,
double minBal, double rate)

{
super(idNum, startBal, chkCharge);
minBalance � minBal;
intRate � rate;

}

public void clearCheck(double amount)
{

if (currentBalance() �� minBalance)
decreaseBalance(amount);

else
super.clearCheck(amount);

}

public double monthlyInterest()
{

if (currentBalance() �� minBalance)
return (currentBalance() * (intRate / 12.0));

else
return super.monthlyInterest();

}
}

84 apcentral.collegeboard.com

Sample Questions for Computer Science A

(c)

public void postMonthlyInterest()
{

double interest;

for (int k � 0; k � accounts.size(); k��)
{

Account acct � (Account) accounts.get(k);
interest � acct.monthlyInterest();
acct.deposit(interest);

}
}

apcentral.collegeboard.com 85

Sample Questions for Computer Science A

Computer Science AB:
Sample Multiple-Choice Questions

Following is a representative set of questions. Questions marked with an
asterisk in the Computer Science A questions are also representative of
Computer Science AB questions. The answer key for Computer Science
AB multiple-choice questions is on page 103.) In this section of the exami-
nation, as a correction for haphazard guessing, one-fourth of the number
of questions answered incorrectly will be subtracted from the number of
questions answered correctly. The AP Computer Science AB Examination
will include at least five multiple-choice questions based on the AP Marine

Biology Simulation Case Study. (See the teacher’s manual for the AP

Marine Biology Simulation Case Study for examples.)

Directions: Determine the answer to each of the following questions or
incomplete statements, using the available space for any necessary
scratchwork. Then decide which is the best of the choices given and fill in
the corresponding oval on the answer sheet. No credit will be given for
anything written in the examination booklet. Do not spend too much time
on any one problem.

Notes:

• Assume that the classes listed in the Quick Reference sheet have been
imported where appropriate. A Quick Reference to the AP Java classes
is included as part of the exam.

• Assume that the implementation classes are used for any questions
referring to linked lists or trees and that the interfaces for stacks,
queues, and priority queues behave as specified.

• Assume that declarations of variables and methods appear within the
context of an enclosing class.

• Assume that method calls that are not prefixed with an object or class
name appear within the context of the class in which the method is
declared.

• Unless otherwise noted in the question, assume that parameters in
method calls are not null.

86 apcentral.collegeboard.com

Sample Questions for Computer Science AB

1. Consider the following code segment.

int [][] mat � new int [3][4];

for (int row � 0; row � mat.length; row��)
{

for (int col � 0; col � mat[0].length; col��)
{

if (row � col)
mat[row][col] � 1;

else if (row �� col)
mat[row][col] � 2;

else
mat[row][col] � 3;

}
}

What are the contents of mat after the code segment has been
executed?

(A) 2 1 1
3 2 1
3 3 2
3 3 3

(B) 2 3 3
1 2 3
1 1 2
1 1 1

(C) 2 3 3 3
1 2 3 3
1 1 2 3

(D) 2 1 1 1
3 2 1 1
3 3 2 1

(E) 1 1 1 1
2 2 2 2
3 3 3 3

apcentral.collegeboard.com 87

Sample Questions for Computer Science AB

2. Which of the following best describes the data structure represented by
java.util.LinkedList ?

(A) A singly linked list with a reference to the first node only

(B) A singly linked list with references to the first and last nodes

(C) A doubly linked list with a reference to the first node only

(D) A doubly linked list with references to the first and last nodes only

(E) A doubly linked list with reference to the first, middle, and last
nodes

88 apcentral.collegeboard.com

Sample Questions for Computer Science AB

3. Consider the following code segment.

Queue que � new ListQueue();
// ListQueue implements Queue

Object obj;

que.enqueue("a");
que.enqueue("b");
que.enqueue("c");
obj � que.peekFront();
que.enqueue(obj � "d");
que.enqueue(obj � "x" � obj);

while (! que.isEmpty())
{
System.out.print(que.dequeue() � " ");

}

What is printed as a result of executing this code segment?

(A) a b c ad

(B) b c ad axa

(C) axa ad c b a

(D) ad axa b c a

(E) a b c ad axa

apcentral.collegeboard.com 89

Sample Questions for Computer Science AB

4. Consider the following declarations.

Stack s � new ListStack();
// ListStack implements Stack

Queue q � new ListQueue();
// ListQueue implements Queue

Assume that s is initially empty and that q initially contains the fol-
lowing strings.

W X Y Z
↑ ↑

front back

Consider the following code segment.

while (!q.isEmpty())
s.push(q.dequeue());

while (!s.isEmpty())
q.enqueue(s.pop());

Which of the following best describes stack s and queue q after the
code segment has been executed?

(A) Stack s is empty and queue q contains W, X, Y, Z, in that order,
with W at the front of the queue.

(B) Stack s is empty and queue q contains Z, Y, X, W, in that order,
with Z at the front of the queue.

(C) Stack s contains Z, Y, X, W, in that order, with Z at the top of the
stack, and queue q is empty.

(D) Stack s contains Z, Y, X, W, in that order, with Z at the top of the
stack; and queue q contains W, X, Y, Z, in that order, with W at
the front of the queue.

(E) Stack s contains Z, Y, X, W, in that order, with Z at the top of the
stack; and queue q contains Z, Y, X, W, in that order, with Z at the
front of the queue.

90 apcentral.collegeboard.com

Sample Questions for Computer Science AB

5. Consider the following code segment.

for (int j � 1; j �� n; j��)
{
for (int k � 1; k �� n; k � k * 2)
{
System.out.println(j � " " � k);

}
}

Of the following, which best characterizes the running time of the code
segment?

(A) O(log n)

(B) O(n)

(C) O(n log n)

(D) O(n2)

(E) O(n!)

6. The following integers are inserted into an empty binary search tree in
the following order.

26 20 37 31 22 18 25 29 19

Which traversal of the tree would produce the following output?

26 20 37 18 22 31 19 25 29

(A) Preorder

(B) Inorder

(C) Postorder

(D) Reverse postorder

(E) Level-by-level

apcentral.collegeboard.com 91

Sample Questions for Computer Science AB

7. Consider the following methods.

public List process1(int n)
{
ArrayList someList � new ArrayList();

for (int k � 0; k � n; k��)
someList.add(new Integer(k));

return someList;
}

public List process2(int n)
{
ArrayList someList � new ArrayList();

for (int k � 0; k � n; k��)
someList.add(k, new Integer(k));

return someList;
}

Which of the following best describes the behavior of process1 and
process2 ?

(A) Both methods produce the same result and take the same amount
of time.

(B) Both methods produce the same result, and process1 is faster
than process2.

(C) The two methods produce different results and take the same
amount of time.

(D) The two methods produce different results, and process1 is
faster than process2.

(E) The two methods produce different results, and process2 is
faster than process1.

92 apcentral.collegeboard.com

Sample Questions for Computer Science AB

8. Consider the following data field and incomplete method. Method
hasItem should return true if item is found in myList; otherwise, it
should return false.

private List myList;

public boolean hasItem(Object item)
{
Iterator itr � myList.iterator();

while (/* condition */)
{
if (itr.next().equals(item))

return true;
}

return false;
}

Which of the following expressions can be used to replace
/* condition */ so that hasItem will work as intended?

(A) itr.hasNext()

(B) myList.hasNext()

(C) ! itr.hasNext()

(D) ! myList.hasNext()

(E) itr !� null

apcentral.collegeboard.com 93

Sample Questions for Computer Science AB

9. Consider the following method.

public static void mystery(ListNode p)
{
if (p !� null)
{

mystery(p.getNext().getNext());
p.setNext(p.getNext().getNext());

}
}

What changes does mystery make to the list whose first node is p ?

(A) It makes no changes to the list.

(B) It removes the first, third, and all odd nodes from the list.

(C) It removes the second, fourth, and all even nodes from the list.

(D) It removes all nodes except the first node of the list.

(E) If the number of nodes in the list is odd, it will cause a
NullPointerException; otherwise,
it removes half of the nodes from the list.

94 apcentral.collegeboard.com

Sample Questions for Computer Science AB

10. Consider the following partial class declaration.

public class LList
{

private ListNode front;

public LList()
{
front � null;

}

public void addToLList(Comparable obj)
{

front � addHelper(front, obj);
}

private ListNode addHelper(
ListNode list, Comparable obj)

{
if (list �� null ||

obj.compareTo(list.getValue()) � 0)
{
list � new ListNode(obj, list);
return list;

}
else
{
list.setNext(addHelper(

list.getNext(), obj));
return list;

}
}

// ... other methods and data not shown
}

apcentral.collegeboard.com 95

Sample Questions for Computer Science AB

Consider the following code segment that appears in a client program.

LList list � new LList();

list.addToLList("manager");
list.addToLList("boy");
list.addToLList("girl");
list.addToLList("anyone");
list.addToLList("place");
list.addToLList("vector");

What values are in list after the code segment has been executed?

(A) [anyone, boy, girl, manager, place, vector]

(B) [manager, boy, girl, anyone, place, vector]

(C) [vector, place, anyone, girl, boy, manager]

(D) [vector, place, manager, girl, boy, anyone]

(E) Nothing is in list because a NullPointerException was
thrown during the execution.

96 apcentral.collegeboard.com

Sample Questions for Computer Science AB

11. Consider the following data field and incomplete method,
partialSum, which is intended to return an integer
array sum such that for all i, sum[i] is equal to
arr[0] � arr[1] � ... � arr[i]. For instance, if
arr contains the values { 1, 4, 1, 3 }, the array
sum will contain the values { 1, 5, 6, 9 }.

private int[] arr;

public int[] partialSum()
{
int[] sum � new int[arr.length];

for (int j � 0; j � sum.length; j��)
sum[j] � 0;

/* missing code */

return sum;
}

apcentral.collegeboard.com 97

Sample Questions for Computer Science AB

The following two implementations of
/* missing code */ are proposed so that
partialSum will work as intended.

Implementation 1

for (int j � 0; j � arr.length; j��)
sum[j] � sum[j - 1] � arr[j];

Implementation 2

for (int j � 0; j � arr.length; j��)
for (int k � 0; k �� j; k��)
sum[j] � sum[j] � arr[k];

Which of the following statements is true?

(A) Both implementations work as intended, but implementation 1 is
faster than implementation 2.

(B) Both implementations work as intended, but implementation 2 is
faster than implementation 1.

(C) Both implementations work as intended and are equally fast.

(D) Implementation 1 does not work as intended, because it will cause
an ArrayIndexOutOfBoundsException.

(E) Implementation 2 does not work as intended, because it will cause
an ArrayIndexOutOfBoundsException.

98 apcentral.collegeboard.com

Sample Questions for Computer Science AB

Questions 12 – 13 refer to the following method.

private static void sort(List theList)
{

Iterator itr � theList.iterator();

PriorityQueue pq � new PriorityQueueImpl();
// PriorityQueueImpl implements PriorityQueue

while (itr.hasNext())
{

pq.add(itr.next())
itr.remove(); // removes last item

// just seen by itr
}

while (!pq.isEmpty())
theList.add(pq.removeMin());

}

apcentral.collegeboard.com 99

Sample Questions for Computer Science AB

12. If the parameter is a LinkedList in sorted order, and the
PriorityQueueImpl is implemented as a min-heap, which data
structure operation dominates the running time of the sort?

(A) pq.add

(B) itr.remove

(C) pq.isEmpty

(D) pq.removeMin

(E) theList.add

13. If the parameter is an ArrayList, and the PriorityQueueImpl is
implemented as a min-heap, which data structure operation dominates
the running time of the sort?

(A) pq.add

(B) itr.remove

(C) pq.isEmpty

(D) pq.removeMin

(E) theList.add

100 apcentral.collegeboard.com

Sample Questions for Computer Science AB

14. An electronic mail application includes a class for handling mail
aliases. A mail alias is a single name that represents a collection of
mail addresses. For example, someone might set up the following mail
aliases.

Alias Collection of mail addresses

family myMom@business.com, myDad@isp.net,
mySis@school.edu

buddies pat@school1.edu, chris@school2.edu,
taylor@school3.edu

teammates jamie@myschool.edu, alex@myschool.edu

Which of the following describes the best choice of data structures
for representing an individual’s mail aliases in the electronic mail
application?

(A) Represent the mail aliases as a two-dimensional array of strings
with the alias name in one column and the collection of mail
addresses for that alias as a single string in a second column.

(B) Represent the mail aliases as an array of linked lists of strings,
where the first element in each linked list is the alias name and
the remaining elements in the linked list are the mail addresses
for that alias.

(C) Represent the mail aliases as an ArrayList of Maps, where
each Map has one key, the alias name, and one value, a set of
strings representing the mail addresses for that alias.

(D) Represent the mail aliases as a Map, using the alias names as the
keys and sets of mail addresses as the values.

(E) Represent the mail aliases as a stack of linked lists, where the
first element in each linked list is the alias and the remaining ele-
ments in the linked list are the mail addresses for that alias.

apcentral.collegeboard.com 101

Sample Questions for Computer Science AB

15. A min-heap with no duplicate values is a binary tree in which the value
in each node is smaller than the values in its children’s nodes.

Suppose the following values are inserted sequentially into an empty
heap in the following order.

23, 56, 54, 16, 78, 65

What will the contents of the min-heap be after the values are
inserted?

(A) (B)

(C) (D)

(D)

102 apcentral.collegeboard.com

Sample Questions for Computer Science AB

Answers to Computer Science AB Multiple-Choice Questions

1 – D 4 – B 7 – A 10 – A 13 – B
2 – D 5 – C 8 – A 11 – D 14 – D
3 – E 6 – E 9 – E 12 – D* 15 – B

* The standard array implementation of a heap should be assumed
unless otherwise explictly stated.

apcentral.collegeboard.com 103

Sample Questions for Computer Science AB

Sample Free-Response Questions

Following is a representative set of questions. The AP Computer Science
AB Examination will include one free-response question based on the AP

Marine Biology Simulation Case Study. (See the teacher’s manual for the
AP Marine Biology Simulation Case Study for examples.)

Directions: SHOW ALL YOUR WORK. REMEMBER THAT PROGRAM
SEGMENTS ARE TO BE WRITTEN IN JAVA.

Notes:

• Assume that the classes listed in the Quick Reference sheet have been
imported where appropriate. A Quick Reference to the AP Java classes
is included as part of the exam.

• Assume that the implementation classes are used for any questions
referring to linked lists or trees and that the interfaces for stacks,
queues, and priority queues behave as specified.

• Assume that declarations of variables and methods appear within the
context of an enclosing class.

• Assume that method calls that are not prefixed with an object or class
name appear within the context of the class in which the method is
declared.

• Unless otherwise noted in the question, assume that parameters in
method calls are not null.

• Unless otherwise noted, assume that methods are called only when
their preconditions are satisfied.

104 apcentral.collegeboard.com

Sample Questions for Computer Science AB

1. Consider using a radix sort to order a list of nonnegative integers. A
radix sort makes as many passes through the list as there are digits in
the largest number to be sorted. For example, if the largest integer in
the list was 492, then the algorithm would make three passes through
the list to sort it.

Assume that the list of numbers to be sorted is in an integer array called
nums. In each pass through the list, the radix sort algorithm sorts the
numbers based on a different digit, working from the least to the most
significant digit. To do this, it uses an intermediate data structure,
queues, an array of ten queues. Each number is placed into the queue
corresponding to the value of the digit being examined. For example, in
the first pass the digit in the ones place is considered, so the number
345 would be enqueued into queues[5]. The number 260 would be
enqueued into queues[0]. In each pass, the algorithm moves the
numbers to be sorted from nums to the array of queues and then back
to nums, as described below. After the last pass, the integers in nums
are in order from smallest to largest.

Radix Sort Algorithm:

In each pass through the list, do the following two steps.

Step 1

Taking each integer from nums in order, insert the integer into the
queue corresponding to the value of the digit currently being
examined. If the integer being examined does not have a digit at a
given place value, 0 is assumed for that place value. For example,
95 has no digit in the hundreds place, so, when examining the hun-
dreds digit, the algorithm would assume the value in the hundreds
place is zero and enqueue 95 into queues[0].

Step 2

After all integers have been inserted into the appropriate queues,
the array nums is filled from beginning to end by emptying the
queues into nums, starting with the integers in queues[0] and
proceeding sequentially through queues[9].

apcentral.collegeboard.com 105

Sample Questions for Computer Science AB

For example, assume that nums contains the integers 380, 95, 345, 382,
260, 100, and 492. The sort will take three passes, because the largest
integer in nums has 3 digits. The following diagram shows the sorting
process. (For passes II and III, only the nonempty queues are shown in
order to save space.)

nums queues nums
Before After Front Rear After
Pass Step 1 ↓ ↓ Step 2

Pass I

[0] 380 [0] 380 260 100 [0] 380
[1] 95 [1] [1] 260
[2] 345 [2] 382 492 [2] 100
[3] 382 [3] [3] 382
[4] 260 [4] [4] 492
[5] 100 [5] 95 345 [5] 95
[6] 492 [6] [6] 345

[7]
[8]
[9]

Pass II

[0] 380 [0] 100 [0] 100
[1] 260 [4] 345 [1] 345
[2] 100 [6] 260 [2] 260
[3] 382 [8] 380 382 [3] 380
[4] 492 [9] 492 95 [4] 382
[5] 95 [5] 492
[6] 345 [6] 95

Pass III

[0] 100 [0] 95 [0] 95
[1] 345 [1] 100 [1] 100
[2] 260 [2] 260 [2] 260
[3] 380 [3] 345 380 382 [3] 345
[4] 382 [4] 492 [4] 380
[5] 492 [5] 382
[6] 95 [6] 492

106 apcentral.collegeboard.com

Sample Questions for Computer Science AB

The radix sort is implemented using the following class declaration.

public class RadixSort
{

// precondition: number >= 0; k >= 0
// postcondition: returns kth digit
// of number, where k = 0 is the
// least significant digit
private static int getDigit(int number, int k)
{ /* implementation not shown */ }

// precondition: nums.length > 0;
// all values in nums are nonnegative;
// k >= 0, where k represents the
// position of the digit used to
// determine queue placement
// postcondition: returns an array of
// 10 queues as described in the
// example; the total number of values
// in the array of queues is equal to
// nums.length
private static Queue[] itemsToQueues(

int[] nums, int k)
{ /* to be implemented in part (a) */ }

// precondition: queues.length is 10;
// numVals is the number of values
// in all 10 queues
// postcondition: returns an array that
// contains the integers from queues[0]
// through queues[9] in the order in
// which they were stored in the
// queues;
// each queue in queues is empty
private static int[] queuesToArray(

Queue[] queues, int numVals)
{ /* to be implemented in part (b) */ }

apcentral.collegeboard.com 107

Sample Questions for Computer Science AB

// precondition: nums.length > 0;
// all values in nums are nonnegative;
// the largest value in nums has
// numDigits digits
// postcondition: returns an array of all
// the values found in nums, sorted in
// nondecreasing order
public static int[] sort(int[] nums, int numDigits)
{ /* to be implemented in part (c) */ }

}

Assume that the following class is available for defining Queue objects.

public class ListQueue implements Queue
{ /* implementation not shown */ }

(a) Write the RadixSort method itemsToQueues, which is described
as follows. Method itemsToQueues corresponds to step 1 of each
pass of the radix sort algorithm, creating the intermediate array of ten
queues. Each integer in nums is inserted into the queue corresponding
to the value of the digit currently being examined. If an integer does
not have a digit at the given place value, 0 is assumed for that place
value. The digit being examined is found in the kth position of the
number. Integers are processed in the order in which they occur in
nums.

In writing itemsToQueues, you may call the RadixSort method
getDigit, which returns the kth digit of its parameter, number. The
least significant digit is indicated by a value of 0 for k. If k is greater
than the number of digits in number, then getDigit returns 0.

108 apcentral.collegeboard.com

Sample Questions for Computer Science AB

The following table illustrates the results of several calls to getDigit.

number k getDigit(number, k)

95 0 5

95 1 9

95 2 0

You do not need to implement getDigit.

Complete method itemsToQueues below.

// precondition: nums.length � 0;
// all values in nums are nonnegative;
// k �� 0, where k represents the
// position of the digit used to
// determine queue placement
// postcondition: returns an array of
// 10 queues as described in the
// example; the total number of values
// in the array of queues is equal to
// nums.length
private static Queue[] itemsToQueues(

int[] nums, int k)

apcentral.collegeboard.com 109

Sample Questions for Computer Science AB

(b) Write the RadixSort method queuesToArray, which is described
as follows. Method queuesToArray corresponds to step 2 of each
pass of the radix sort algorithm, creating a new list from the values in
the array of queues.

Complete method queuesToArray below.

// precondition: queues.length is 10;
// numVals is the number of values
// in all 10 queues
// postcondition: returns an array that
// contains the integers from queues[0]
// through queues[9] in the order in
// which they were stored in the
// queues;
// each queue in queues is empty
private static int[] queuesToArray(

Queue[] queues, int numVals)

(c) Write the RadixSort method sort, as started below. In writing
sort, you may call methods getDigit, itemsToQueues,
and queuesToArray. Assume that itemsToQueues and
queuesToArray work as specified, regardless of what you
wrote in parts (a) and (b). Solutions that reimplement functionality
provided by these methods, rather than invoking these methods,
will not receive full credit.

Complete method sort below.

// precondition: nums.length � 0;
// all values in nums are nonnegative;
// the largest value in nums has
// numDigits digits
// postcondition: returns an array of all
// the values found in nums, sorted in
// nondecreasing order
public static int[] sort(int[] nums, int numDigits)

110 apcentral.collegeboard.com

Sample Questions for Computer Science AB

2. Consider the following interface CityInfo that will be used to repre-
sent cities in the United States. Each city is represented by its name and
the name of the state in which it is located.

public interface CityInfo
{
String city();
String state();

}

The following class, States, will be used to store states and their
respective cities. Information from CityInfo objects will be stored in
this class as a TreeMap. In the TreeMap, the keys are the state names,
and for each key the corresponding value is a Set of the cities in that
state.

public class States
{
private Map theMap;

public States() { theMap � new TreeMap(); }

// postcondition: Information from theCity
// has been added to the Map
public void addCityToMap(CityInfo theCity)
{ /* to be implemented in part (a) */ }

public void printOneState(String theState)
{ /* to be implemented in part (b) */ }

public void printAllStates()
{ /* to be implemented in part (c) */ }

// ... other methods not shown
}

apcentral.collegeboard.com 111

Sample Questions for Computer Science AB

For example, assume that a States object, stateMap, has been
initialized with the following CityInfo objects.

[Albany,NY] [Miami,FL] [Hamilton,NY]
[Jacksonville,FL] [Dallas,TX]

The following table represents the entries in stateMap.

Key Value

FL [Miami, Jacksonville]

NY [Albany, Hamilton]

TX [Dallas]

(a) Write the States method addCityToMap, which is described as
follows. Method addCityToMap takes one parameter: a new
CityInfo object, and updates theMap to include the information
encapsulated in the CityInfo object. Method addCityToMap
should run in O(log n) expected time where n is the number of
states in theMap.

The following tables show the result of two sequential calls to
addCityToMap, when applied to the object stateMap shown at
the beginning of the question. Assume that city1 has been defined
as the CityInfo object [Albany,GA] and city2 has been
defined as the CityInfo object [Houston,TX].

112 apcentral.collegeboard.com

Sample Questions for Computer Science AB

Result of the call
stateMap.addCityToMap(city1);

Key Value

FL [Miami, Jacksonville]

GA [Albany]

NY [Albany, Hamilton]

TX [Dallas]

Result of the call
stateMap.addCityToMap(city2);

Key Value

FL [Miami, Jacksonville]

GA [Albany]

NY [Albany, Hamilton]

TX [Dallas, Houston]

Complete method addCityToMap below.

// postcondition: information from theCity
// has been added to theMap
public void addCityToMap(CityInfo theCity)

apcentral.collegeboard.com 113

Sample Questions for Computer Science AB

(b) Write method printOneState, which is described as follows.
Method printOneState takes a String representing a state
that is in theMap. It prints the name of the state and a list
of cities in the state. The output should not include [], and the
cities should each be separated by a blank space. Method
printOneState should run O(c � log n) in time, where n is
the number of states in theMap and c is the number of cities
associated with the given state.

For example, if stateMap contains the entries shown at the begin-
ning of the question, the call stateMap.printOneState("FL")
will result in the following output.

FL Miami Jacksonville

Complete method printOneState below. A solution that creates
an unnecessary instance of any Collection class will not receive full
credit.

public void printOneState(String theState)

114 apcentral.collegeboard.com

Sample Questions for Computer Science AB

(c) Write method printAllStates, which is described as follows.
Method printAllStates outputs the cities in each state in the
format shown in part (b). The states should be listed in alphabetical
order. Method printAllStates should run in O(c � n log n)
time, where n is the number of states in theMap and c is the total
number of cities stored in theMap.

For example, if the States object stateMap has the following
entries,

Key Value

FL [Miami, Jacksonville]

GA [Albany]

NY [Albany, Hamilton]

TX [Dallas, Houston]

then the call stateMap.printAllStates() will produce the fol-
lowing output.

FL Miami Jacksonville
GA Albany
NY Albany Hamilton
TX Dallas Houston

In writing printAllStates, you may call printOneState as
specified in part (b). Assume that printOneState works as
specified, regardless of what you wrote in part (b). Solutions that
reimplement functionality provided by this method, rather than
invoking this method, will not receive full credit.

Complete method printAllStates below. A solution that creates
an unnecessary instance of any Collection class will not receive full
credit.

public void printAllStates()

apcentral.collegeboard.com 115

Sample Questions for Computer Science AB

3. A min-heap with no duplicate values is a binary tree in which the value
in each node is smaller than the values in its children’s nodes. A tree
consisting of zero or one node is by default a min-heap. For example,
trees T1 and T2 are min-heaps, but tree T3 is not, because the shaded
node has a larger value than one of its children (as shown by the thick
line).

116 apcentral.collegeboard.com

Sample Questions for Computer Science AB

Consider the MinHeap class as shown below. The nodes of the min-
heap will be represented by the TreeNode implementation class as
shown in the Quick Reference. You may assume that the values stored
in the TreeNode objects are Comparable objects.

public class MinHeap
{
private TreeNode root;

private TreeNode smallerChild(TreeNode t)
{ /* to be implemented in part (a) */ }

private boolean isHeapOrdered(TreeNode t)
{ /* to be implemented in part (b) */ }

// precondition: t is not null
private TreeNode removeMinHelper(TreeNode t)
{ /* to be implemented in part (c) */ }

public Object removeMin()
{
if (root �� null)
return null;

else
{
Object result � root.getValue();
root � removeMinHelper(root);
return result;

}
}

// ... other methods not shown
}

apcentral.collegeboard.com 117

Sample Questions for Computer Science AB

(a) Write method smallerChild, which is described as follows.
smallerChild returns a reference to the child node of t that con-
tains the smaller value (or null if t is a leaf node). If t has only
one child, smallerChild should return a reference to that child. If
t is null, smallerChild should return null.

The following diagram is repeated for your convenience.

The following table shows the results of several calls to
smallerChild.

Method call Return value

smallerChild(T2) P

smallerChild(P) Q

smallerChild(Q) R

smallerChild(R) null

smallerChild(null) null

Complete method smallerChild below.

private TreeNode smallerChild(TreeNode t)

118 apcentral.collegeboard.com

Sample Questions for Computer Science AB

(b) Write method isHeapOrdered, which is described as follows.
isHeapOrdered returns true if t is a min-heap and false
otherwise.

In writing isHeapOrdered, you may call method smallerChild
specified in part (a). Assume that smallerChild works as
specified, regardless of what you wrote in part (a). Solutions that
reimplement functionality provided by this method, rather than
invoking this method, will not receive full credit.

Complete method isHeapOrdered below.

private boolean isHeapOrdered(TreeNode t)

apcentral.collegeboard.com 119

Sample Questions for Computer Science AB

(c) The removeMinHelper method removes the minimum value from
a min-heap and returns the modified min-heap. To do so, replace the
value in the root node with the smaller of its children’s values and
then recursively call removeMinHelper on the subtree rooted at
the smaller child. If the min-heap consists of a single node, that
node is removed and null is returned.

For example, the following diagram illustrates the steps to restore
the heap after removing 2 from the root node.

Write method removeMinHelper, which is described as follows.
removeMinHelper should remove the minimum item from the
heap and return the resulting heap.

In writing removeMinHelper, you may call method
smallerChild specified in part (a). Assume that smallerChild
works as specified, regardless of what you wrote in part (a).
Solutions that reimplement functionality provided by this method,
rather than invoking this method, will not receive full credit.

Complete method removeMinHelper below.

// precondition: t is not null
private TreeNode removeMinHelper(TreeNode t)

120 apcentral.collegeboard.com

Sample Questions for Computer Science AB

Suggested Solutions to Free-Response Questions

Note: There are many correct variations of these solutions.

Question 1

(a)

private static Queue[]
itemsToQueues(int[] nums, int k)

{
Queue[] queues � new Queue[10];

for (int j � 0; j � queues.length; j��)
queues[j] � new ListQueue();

for (int j � 0; j � nums.length; j��)
{

int index � getDigit(nums[j], k);
queues[index].enqueue(new Integer(nums[j]));

}

return queues;
}

apcentral.collegeboard.com 121

Sample Questions for Computer Science AB

(b)

private static int[] queuesToArray(
Queue[]queues, int numVals)

{
int index � 0;
int[] nums � new int[numVals];

for (int j � 0; j � queues.length; j��)
{

while (!queues[j].isEmpty())
{

Integer val � (Integer) queues[j].dequeue();
nums[index] � val.intValue();
index��;
}

}

return nums;
}

(c)

public static int[] sort(int[] nums, int numDigits)
{

Queue[] qlist;

for (int j � 0; j � numDigits; j��)
{

qlist � itemsToQueues(nums, j);
nums � queuesToArray(qlist, nums.length);

}

return nums;
}

122 apcentral.collegeboard.com

Sample Questions for Computer Science AB

Question 2

(a)

public void addCityToMap(CityInfo theCity)
{

Set cities � (Set) theMap.get(theCity.state());

if (cities �� null)
{

cities � new HashSet();
theMap.put(theCity.state(), cities);

}

cities.add(theCity.city());
}

Commentary: Note that a TreeSet is not acceptable in place of a
HashSet because it does not meet the requirements for expected
running time as stated in the problem.

(b)

public void printOneState(String theState)
{

System.out.print(theState);

Set cities � (Set) theMap.get(theState);

Iterator itr � cities.iterator();
while (itr.hasNext())

System.out.print(" " � itr.next());

System.out.println();
}

Commentary: The call to theMap.get takes O(log n) time. Iterating
through a HashSet takes O(c) time. See the commentary on the topic
outline for more information.

apcentral.collegeboard.com 123

Sample Questions for Computer Science AB

(c)

public void printAllStates()
{

Iterator itr � theMap.keySet().iterator();

while (itr.hasNext())
printOneState((String) itr.next());

}

Question 3

(a)

private TreeNode smallerChild(TreeNode t)
{

if (t �� null)
return null;

else if (t.getLeft() �� null)
return t.getRight();

else if (t.getRight() �� null)
return t.getLeft();

else
{

Comparable left �
(Comparable) (t.getLeft().getValue());

Comparable right �
(Comparable) (t.getRight().getValue());

if (left.compareTo(right) � 0)
return t.getLeft();

else
return t.getRight();

}
}

124 apcentral.collegeboard.com

Sample Questions for Computer Science AB

(b)

private boolean isHeapOrdered(TreeNode t)
{

TreeNode smaller � smallerChild(t);
if (smaller �� null)

return true;
else
{

Comparable temp � (Comparable) (t.getValue());
return

(temp.compareTo(smaller.getValue()) � 0)
&& isHeapOrdered(t.getLeft())
&& isHeapOrdered(t.getRight());

}
}

(c)

// precondition: t is not null
private TreeNode removeMinHelper(TreeNode t)
{

TreeNode smaller � smallerChild(t);
if (smaller �� null)

return null;

t.setValue(smaller.getValue());
if (smaller �� t.getLeft())

t.setLeft(removeMinHelper(t.getLeft()));
else

t.setRight(removeMinHelper(t.getRight()));

return t;
}

apcentral.collegeboard.com 125

Sample Questions for Computer Science AB

Appendix A

AP Computer Science Java Subset

The AP Java subset is intended to outline the features of Java that may
appear on AP Computer Science Examinations. The AP Java subset is NOT
intended as an overall prescription for computer science courses — the
subset itself will need to be supplemented in order to cover a typical intro-
ductory curriculum. For example, I/O is essential to programming and can
be done in many different ways. Because of this, specific I/O features are
not tested on the AP Computer Science Exam.

This appendix describes the Java subset that students will be expected
to understand when they take the AP Computer Science Exam. A number
of features are also mentioned that are potentially relevant in a CS1/2
course but are not specifically tested on the AP Computer Science Exam.

The three principles that guided the formulation of the subset were as
follows:

1. Enable the test designers to formulate meaningful questions

2. Help students with test preparation

3. Enable instructors to follow a variety of approaches in their courses

To help students with test preparation, the AP Java subset was intention-
ally kept small. Language constructs and library features were omitted that
did not add significant functionality and that can, for the formulation of
exam questions, be expressed by other mechanisms in the subset. For
example, inner classes or the StringBuffer class are not essential for
the formulation of exam questions — the exam uses alternatives that can
be easily understood by students. Of course, these constructs add signifi-
cant value for programming. Omission of a feature from the AP Java sub-
set does not imply any judgment that the feature is inferior or not
worthwhile.

The AP Java subset gives instructors flexibility in how they use Java in
their courses. For example, some courses teach how to perform input/out-
put using streams or readers/writers, others teach graphical user interface

126 apcentral.collegeboard.com

construction, and yet others rely on a tool or library that handles
input/output. For the purpose of the AP Computer Science Exam, these
choices are incidental and are not central for the mastery of computer
science concepts. The AP Java subset does not address handling of user
input at all. That means that the subset is not complete. To create actual
programs, instructors need to present additional mechanisms in their
classes.

The following section contains the language features that may be tested
on the AP Computer Science Exam. A summary table is provided that out-
lines the features that are tested on the A and AB exams, the AB exam
only, and those features that are useful but are not tested on either exam.
A list specifying which Standard Java classes and methods will be used on
the exam is available at AP Central. There will be no extra AP classes pro-
vided as part of the subset.

Language Features

1. The primitive types int, double, and boolean are part of the AP
Java subset. The other primitive types short, long, byte, char, and
float are not in the subset. In particular, students need not be aware
that strings are composed of char values. Introducing char does not
increase the expressiveness of the subset. Students already need to
understand string concatenation, String.substring, and
String.equals. Not introducing char avoids complexities with the
char/int conversions and confusion between "x" and 'x'.

2. Arithmetic operators: �, �, *, /, % are part of the AP Java subset.

3. The increment/decrement operators �� and �� are part of the AP
Java subset. These operators are used only for their side effect, not for
their value. That is, the postfix form (for example, x��) is always
used, and the operators are not used inside other expressions. For
example, a[x��] is not used.

apcentral.collegeboard.com 127

4. The assignment operator � is part of the AP Java subset. The com-
bined arithmetic/assignment operators ��, ��, *�, /�, %� are part
of the AP Java subset although they are used simply as a shorthand
and will not be used in the adjustment part of a for loop.

5. Relational operators ��, !�, �, ��, �, �� are part of the AP Java
subset.

6. Logical operations &&, ||, ! are part of the AP Java subset. Students
need to understand the “short circuit” evaluation of the && and ||
operators. The logical &, | and ^ and the bit operators ��, ��, � �
�, &, ~, |, ^ are not in the subset.

7. The ternary ?: operator is not in the subset.

8. The numeric casts (int) and (double) are part of the AP Java sub-
set. Since the only primitive types in the subset are int, double, and
boolean, the only required numeric casts are the cast (int) and the
cast (double). Students are expected to understand “truncation
towards 0” behavior as well as the fact that positive floating-point
numbers can be rounded to the nearest integer as (int)(x � 0.5),
negative numbers as (int)(x � 0.5).

9. String concatenation � is part of the AP Java subset. Students are
expected to know that concatenation converts numbers to strings and
invokes toString on objects. String concatenation can be less effi-
cient than using the StringBuffer class. However, for greater
simplicity and conceptual clarity, the StringBuffer class is not in
the subset.

10. The escape sequences inside strings \\, \", \n are part of the AP Java
subset. The \t escape and Unicode \uxxxx escapes are not in the
subset. The \' escape is only necessary inside character literals and is
not in the subset.

128 apcentral.collegeboard.com

11. User input is not part of the AP Java subset. There are many
possible ways for supplying user input; e.g., by reading from a
BufferedReader that is wrapped around System.in, reading from
a stream (such as a file or a URL), or from a dialog box. There are
advantages and disadvantages to the various approaches. In particular,
reading from System.in is both fraught with complexities (two
nested readers and the handling of checked exceptions) and consid-
ered old fashioned by some instructors. The exam does not prescribe
any one approach. Instead, if reading input is necessary, it will be indi-
cated in a way similar to the following:

double x � /* call to a method that
reads a floating-point number */;

or

double x � IO.readDouble();
// read user input

Processing string input (e.g., with StringTokenizer) and converting
strings to numeric values (e.g., with Integer.parseInt) is not in
the subset.

12. Testing of output is restricted to System.out.print and
System.out.println. As with user input, there are many possible
ways for directing the output of a program, for example to
System.out, to a file, or to a text area in a graphical user interface.
The AP Java subset includes the ability to print output to
System.out, because it makes it easy to formulate questions.
Since most graphical environments allow printing of debug messages
to System.out (with output being collected in a special window, e.g.,
the “Java console” in a browser), students are usually familiar with
this method of producing output. Formatted output (e.g., with
NumberFormat) is not in the subset.

apcentral.collegeboard.com 129

13. The main method and command-line arguments are not in the subset.
The AP Computer Science Development Committee does not prescribe
any particular approach for program invocation. In free-response ques-
tions, students are not expected to invoke programs. In case studies,
program invocation with main may occur, but the main method will
be kept very simple.

14. Arrays: one-dimensional arrays and two-dimensional rectangular
arrays are part of the AP Java subset. Both arrays of primitive types
(e.g., int[]) and arrays of objects (e.g., Student[]) are in the sub-
set. Initialization of named arrays (int[] arr � { 1, 2, 3 };) is part
of the AP Java subset. Two-dimensional arrays will only be tested
on the AB exam. Arrays with more than two dimensions (e.g.,
rubik � new Color[3][3][3]) are not in the subset. “Ragged”
arrays (e.g., new int[3][]) are not in the subset. In particular,
students do not need to know that an int[3][3] really is an “array
of arrays” whose rows can be replaced with other int[] arrays.
However, students are expected to know that arr[0].length is the
number of columns in a rectangular two-dimensional array arr.
Anonymous arrays (e.g., new int[] { 1, 2, 3 }) are not in the sub-
set.

15. The control structures if, if/else, while, for, return are part of
the AP Java subset. The do/while, switch, plain and labeled break
and continue statements are not in the subset.

16. Method overloading (e.g., MyClass.someMethod(String str)
and MyClass.someMethod(int num)) is part of the AP Java
subset. Students should understand that the signature of a method
depends on the number, types, and order of its parameters but does
not include the return type of the method.

130 apcentral.collegeboard.com

17. Classes: Students are expected to construct objects with the new oper-
ator, to supply construction parameters, and to invoke accessor and
modifier methods. Students are expected to modify existing classes
(by adding or modifying methods and instance variables). Students are
expected to design their own classes.

18. Visibility: In the AP Java subset, all classes are public. All instance
variables are private. Methods, constructors, and constants
(static final variables) are either public or private. The AP
Java subset does not use protected and package (default) visibility.

19. The AP Java subset uses /* */, and // comments. Javadoc com-
ments are not part of the subset.

20. The final keyword is only used for final block scope constants
and static final class scope constants. final parameters or
instance variables, final methods and final classes are not in the
subset.

21. The concept of static methods is a part of the subset. Students are
required to understand when the use of static methods is appropri-
ate. In the exam, static methods are always invoked through a class,
never an object (i.e., ClassName.method(), not obj.method()).

22. static final variables are part of the subset, other static vari-
ables are not.

23. The null reference is part of the AP Java subset.

24. The use of this is restricted to passing the implicit parameter in its
entirety to another method (e.g., obj.method(this)) and to descrip-
tions such as "the implicit parameter this". Using this.var or
this.method(args) is not in the subset. In particular, students are
not required to know the idiom "this.var � var", where var is
both the name of an instance variable and a parameter variable. Calling
other constructors from a constructor with the this(args) notation
is not in the subset.

apcentral.collegeboard.com 131

25. The use of super to invoke a superclass constructor
(super(args)), or to invoke a superclass method (i.e.,
super.method(args)) is part of the AP Java subset.

26. Students are expected to implement constructors that initialize all
instance variables. Class constants are initialized with an initializer:
public static final MAX_SCORE � 5;

The rules for default initialization (with 0, false or null) are not in
the subset. Initializing instance variables with an initializer is not in
the subset. Initialization blocks are not in the subset.

27. Students are expected to extend classes and implement interfaces.
Students are also expected to have a knowledge of inheritance that
includes understanding the concepts of method overriding and poly-
morphism. Students are expected to implement their own subclasses.

28. Students are expected to read the definitions of interfaces and
abstract classes and understand that the abstract methods need to be
redefined in non-abstract classes. Students are expected to write inter-
faces or class declarations when given a general description of the
interface or class. On the AB exam, students are expected to define
their own interfaces and abstract classes.

29. Students are expected to understand the difference between object
equality (equals) and identity (��). The implementation of equals
and hashCode methods are not in the subset.

30. Cloning is not in the subset, because of the complexities of implement-
ing the clone method correctly and the fact that clone is rarely
required in Java programs.

31. The finalize method is not in the subset.

132 apcentral.collegeboard.com

32. Students are expected to understand that conversion from a subclass
reference to a superclass reference is legal and does not require a cast.
Class casts (generally from Object to another class) are part of the
AP Java subset, to enable the use of generic collections, for example:
Person p � (Person) people.get(i);

The instanceof operator is not in the subset. Array type compatibil-
ity and casts between array types are not in the subset.

33. Students are expected to have a basic understanding of packages and
a reading knowledge of import statements of the form
import packageName.subpackageName.ClassName;

import statements with a trailing *, packages and methods for locat-
ing class files (e.g., through a class path) are not in the subset.

34. Nested and inner classes are not in the subset.

35. Threads are not in the subset.

36. Students are expected to understand the exceptions that
occur when their programs contain errors (in particular,
NullPointerException, ArrayIndexOutOfBoundsException,
ArithmeticException, ClassCastException,
IllegalArgumentException). On the AB exam,
students are expected to be able to throw the unchecked
IllegalStateException and NoSuchElementException
in their own methods (principally when implementing collection

ADTs). Checked exceptions are not in the subset. In particular,
the try/catch/finally statements and the throws
modifier are not in the subset.

apcentral.collegeboard.com 133

Summary Table

Potentially relevant

Tested in Tested in to CS1/CS2 course

A, AB exam AB exam only but not tested

int, double, short, long,
boolean byte, char, float

� , �, *, /, Using the values of
%, ��, �� ��, �� expressions in
�, ��, -�, other expressions
*�, /�, %�
��, !�, �,
��, �, ��
&&, ||, ! and ��, ��, � � �,
short-circuit evaluation &, ~, |, ^, ?:

(int), (double) Other numeric casts
such as (char) or
(float)

String concatenation StringBuffer

Escape sequences \", Other escape
\\, \n inside strings sequences (\', \t,

\unnnn)

System.out.print, System.in, Stream
System.out.println input/output, GUI

input/output, parsing
input, formatted
output

134 apcentral.collegeboard.com

Potentially relevant

Tested in Tested in to CS1/CS2 course

A, AB exam AB exam only but not tested

public static void
main(String[] args)

1-dimensional arrays 2-dimensional Arrays with 3 or more
rectangular arrays dimensions, ragged

arrays

if, if/else, do/while, switch,
while, for, break, continue
return

Modify existing classes,
design classes

public classes, protected or
private instance package visibility
variables, public or
private methods
or constants

javadoc

static final class final local
variables variables,

final parameter
variables,
instance variables,
methods or classes

static methods static
non-final variables

null, this, super, this.var,
super.method(args) this.method(args),

this(args)

apcentral.collegeboard.com 135

Potentially relevant

Tested in Tested in to CS1/CS2 course

A, AB exam AB exam only but not tested

Constructors and Default initialization
initialization of of instance variables,
static variables initialization blocks

Understand inheritance
hierarchies. Design and
implement subclasses.
Modify subclass
implementations and
implementations of
interfaces.

Understand the Design and implement
concepts of abstract abstract classes
classes and interfaces.
Design an interface.

Understand equals, clone,
��, and !� implementation of
comparison of objects equals
Comparable.compareTo

Conversion to instanceof
supertypes and
(Subtype) casts

Nested classes,
inner classes

Package concept, import
import packageName.className; packageName.*

defining packages,
class path

136 apcentral.collegeboard.com

Potentially relevant

Tested in Tested in to CS1/CS2 course

A, AB exam AB exam only but not tested

Exception concept, Throwing standard Checked exceptions
common exceptions unchecked exceptions try/catch/

finally, throws

Comparable, List, Set, Map,
String, Math, Iterator,
Random, Object, ListIterator,
ArrayList LinkedList,

HashSet, TreeSet,
HashMap, TreeMap

Wrapper classes
(Integer, Double)

Sorting methods in
Arrays and
Collections

apcentral.collegeboard.com 137

Appendix B

Standard Java Library Methods Required for APCS A

class java.lang.Object
• boolean equals(Object other)
• String toString()

interface java.lang.Comparable
• int compareTo(Object other)

// return value � 0 if this is less than other
// return value � 0 if this is equal to other
// return value � 0 if this is greater than other

class java.lang.Integer
implements java.lang.Comparable

• Integer(int value) // constructor
• int intValue()
• boolean equals(Object other)
• String toString()
• int compareTo(Object other)

// specified by java.lang.Comparable

class java.lang.Double
implements java.lang.Comparable

• Double(double value) // constructor
• double doubleValue()
• boolean equals(Object other)
• String toString()
• int compareTo(Object other)

// specified by java.lang.Comparable

class java.lang.String
implements java.lang.Comparable

• int compareTo(Object other)
// specified by java.lang.Comparable

• boolean equals(Object other)
• int length()

138 apcentral.collegeboard.com

• String substring(int from, int to)
// returns the substring beginning at from
// and ending at to-1

• String substring(int from)
// returns substring(from, length())

• int indexOf(String s)
// returns the index of the first occurrence of s;
// returns �1 if not found

class java.lang.Math
• static int abs(int x)
• static double abs(double x)
• static double pow(double base,

double exponent)
• static double sqrt(double x)

class java.util.Random
• int nextInt(int n)

// returns an integer in the range from 0 to n-1 inclusive
• double nextDouble()

class java.util.ArrayList
• int size()
• boolean add(Object x)
• Object get(int index)
• Object set(int index, Object x)

// replaces the element at index with x
// returns the element formerly at the specified position

• void add(int index, Object x)
// inserts x at position index, sliding elements
// at position index and higher to the right
// (adds 1 to their indices) and adjusts size

• Object remove(int index)
// removes element from position index, sliding
// elements at position index � 1 and higher to the
// left (subtracts 1 from their indices) and adjusts size

apcentral.collegeboard.com 139

Appendix C

Standard Java Library Methods Required for APCS AB

class java.lang.Object
• boolean equals(Object other)
• String toString()
• int hashCode()

interface java.lang.Comparable
• int compareTo(Object other)

// return value � 0 if this is less than other
// return value � 0 if this is equal to other
// return value � 0 if this is greater than other

class java.lang.Integer
implements java.lang.Comparable

• Integer(int value) // constructor
• int intValue()
• boolean equals(Object other)
• String toString()
• int compareTo(Object other)

// specified by java.lang.Comparable

class java.lang.Double
implements java.lang.Comparable

• Double(double value) // constructor
• double doubleValue()
• boolean equals(Object other)
• String toString()
• int compareTo(Object other)

// specified by java.lang.Comparable

140 apcentral.collegeboard.com

class java.lang.String
implements java.lang.Comparable

• int compareTo(Object other)
// specified by java.lang.Comparable

• boolean equals(Object other)
• int length()
• String substring(int from, int to)

// returns the substring beginning at from
// and ending at to-1

• String substring(int from)
// returns substring(from, length())

• int indexOf(String s)
// returns the index of the first occurrence of s;
// returns -1 if not found

class java.lang.Math
• static int abs(int x)
• static double abs(double x)
• static double pow(double base,

double exponent)
• static double sqrt(double x)

class java.util.Random
• int nextInt(int n)

// returns an integer in the range from 0 to n-1 inclusive
• double nextDouble()

interface java.util.List
• boolean add(Object x)
• int size()
• Object get(int index)
• Object set(int index, Object x)

// replaces the element at index with x
// returns the element formerly at the specified position

• Iterator iterator()
• ListIterator listIterator()

apcentral.collegeboard.com 141

class java.util.ArrayList
implements java.util.List

• Methods in addition to the List methods:
• void add(int index, Object x)

// inserts x at position index, sliding elements
// at position index and higher to the right
// (adds 1 to their indices) and adjusts size

• Object remove(int index)
// removes element from position index, sliding
// elements at position index � 1 and higher to the
// left (subtracts 1 from their indices) and adjusts size

class java.util.LinkedList
implements java.util.List

• Methods in addition to the List methods:
• void addFirst(Object x)
• void addLast(Object x)
• Object getFirst()
• Object getLast()
• Object removeFirst()
• Object removeLast()

interface java.util.Set
• boolean add(Object x)
• boolean contains(Object x)
• boolean remove(Object x)
• int size()
• Iterator iterator()

class java.util.HashSet
implements java.util.Set

class java.util.TreeSet
implements java.util.Set

142 apcentral.collegeboard.com

interface java.util.Map
• Object put(Object key, Object value)
• Object get(Object key)
• Object remove(Object key)
• boolean containsKey(Object key)
• int size()
• Set keySet()

class java.util.HashMap
implements java.util.Map

class java.util.TreeMap
implements java.util.Map

interface java.util.Iterator
• boolean hasNext()
• Object next()
• void remove()

interface java.util.ListIterator
extends java.util.Iterator

• Methods in addition to the Iterator methods
• void add(Object x)
• void set(Object x)

apcentral.collegeboard.com 143

Appendix D

Implementation classes for linked list and tree nodes
(APCS AB)

Unless otherwise noted, assume that a linked list implemented from the
ListNode class does not have a dummy header node.

public class ListNode
{
private Object value;
private ListNode next;

public ListNode(Object initValue,
ListNode initNext)

{ value � initValue; next � initNext; }

public Object getValue() { return value; }

public ListNode getNext() { return next; }

public void setValue(Object theNewValue)
{ value � theNewValue; }

public void setNext(ListNode theNewNext)
{ next � theNewNext; }

}

144 apcentral.collegeboard.com

Unless otherwise noted, assume that a tree implemented from the
TreeNode class does not have a dummy root node.

public class TreeNode
{
private Object value;
private TreeNode left;
private TreeNode right;

public TreeNode(Object initValue)
{ value � initValue;

left � null; right � null; }

public TreeNode(Object initValue,
TreeNode initLeft,
TreeNode initRight)

{ value � initValue;
left � initLeft; right � initRight; }

public Object getValue() { return value; }

public TreeNode getLeft() { return left; }

public TreeNode getRight() { return right; }

public void setValue(Object theNewValue)
{ value � theNewValue; }

public void setLeft(TreeNode theNewLeft)
{ left � theNewLeft; }

public void setRight(TreeNode theNewRight)
{ right � theNewRight; }

}

apcentral.collegeboard.com 145

Appendix E

Interfaces for stacks, queues, and priority queues
(APCS AB)

Interface for stacks
(* See note at end of reference)

public interface Stack
{
/**
* postcondition:
* returns true if stack is empty;
* otherwise, returns false
*/

boolean isEmpty();

/**
* precondition:
* stack is [e1, e2, ..., en] with n �� 0
* postcondition:
* stack is [e1, e2, ..., en, x]
*/

void push(Object x);

/**
* precondition:
* stack is [e1, e2, ..., en] with n �� 1
* postcondition:
* stack is [e1, e2, ..., e(n-1)];
* returns en
* exceptions:
* throws an unchecked exception if the
* stack is empty
*/

Object pop();

146 apcentral.collegeboard.com

/**
* precondition:
* stack is [e1, e2, ..., en] with n �� 1
* postcondition:
* returns en
* exceptions:
* throws an unchecked exception if the
* stack is empty
*/

Object peekTop();
}

Interface for queues
(* See note at end of reference)

public interface Queue
{
/**
* postcondition:
* returns true if queue is empty;
* otherwise, returns false
*/

boolean isEmpty();

/**
* precondition:
* queue is [e1, e2, ..., en] with n �� 0
* postcondition:
* queue is [e1, e2, ..., en, x]
*/

void enqueue(Object x);

apcentral.collegeboard.com 147

/**
* precondition:
* queue is [e1, e2, . . ., en] with n �� 1
* postcondition:
* queue is [e2, . . ., en]; returns e1
* exceptions:
* throws an unchecked exception if the
* queue is empty
*/

Object dequeue();

/**
* precondition:
* queue is [e1, e2, . . ., en] with n �� 1
* postcondition:
* returns e1
* exceptions:
* throws an unchecked exception if the
* queue is empty
*/

Object peekFront();
}

Interface for priority queues
(* See note at end of reference)

public interface PriorityQueue
{
/**
* postcondition:
* returns true if the number of elements
* in the priority queue is 0;
* otherwise, returns false
*/
boolean isEmpty();

148 apcentral.collegeboard.com

/**
* postcondition:
* x has been added to the priority queue;
* the number of elements in the priority
* queue is increased by 1.
*/

void add(Object x);

/**
* postcondition:
* The smallest item in the priority queue
* is removed and returned;
* the number of elements in the
* priority queue is decreased by 1.
* exceptions:
* throws unchecked exception if
* priority queue is empty
*/

Object removeMin();

/**
* postcondition:
* The smallest item in the priority queue
* is returned;
* the priority queue is unchanged
* exceptions:
* throws unchecked exception if
* priority queue is empty
*/

Object peekMin();
}

* Note regarding use of stacks, queues, and priority queues

When a stack, queue, or priority queue object needs to be instantiated,
code such as the following is used:

Queue q � new ListQueue();
// ListQueue implements Queue

apcentral.collegeboard.com 149

150 apcentral.collegeboard.com

AP® Program Essentials

The AP Reading

In June, the free-response sections of the exams, as well as the Studio Art
portfolios, are scored by college faculty and secondary school AP teachers
at the AP Reading. Thousands of readers participate, under the direction
of a Chief Reader in each field. The experience offers both significant
professional development and the opportunity to network with like-
minded educators.

If you are an AP teacher or a college faculty member and would like to
serve as a reader, you can visit AP Central for more information on how to
apply. Alternatively, send an e-mail message to apreader@ets.org, or call
Performance Scoring Services at 609 406-5383.

AP Grades

The readers’ scores on the essay and problem-solving questions are com-
bined with the results of the computer-scored multiple-choice questions,
and the total raw scores are converted to AP’s 5-point scale:

AP GRADE QUALIFICATION

5 Extremely well qualified
4 Well qualified
3 Qualified
2 Possibly qualified
1 No recommendation

Grade Distributions

Many teachers want to compare their students’ grades with the national
percentiles. Grade distribution charts are available at AP Central, as is
information on how the cut-off points for each AP grade are calculated.
Grade distribution charts are also available on the AP student site at
www.collegeboard.com/apstudents.

Earning College Credit and/or Placement

Credit, advanced placement, or both are awarded by the college or univer-
sity, not the College Board or the AP Program. The best source of specific
and up-to-date information about an individual institution’s policy is its
catalog or Web site.

apcentral.collegeboard.com 151

Why Colleges Grant Credit and/or Placement for
AP Grades
Colleges know that the AP grades of their incoming students represent a
level of achievement equivalent to that of students who take the same
course in the colleges’ own classrooms. That equivalency is assured
through several Advanced Placement Program processes:

• College faculty serve on the committees that develop the course
descriptions and examinations in each AP subject.

• College faculty are responsible for standard setting and are involved
in the evaluation of student responses at the AP Reading.

• AP courses and exams are updated regularly, based on both the
results of curriculum surveys at up to 200 colleges and universities
and the interactions of committee members with professional orga-
nizations in their discipline.

• College comparability studies are undertaken in which the perfor-
mance of college students on AP Exams is compared with that of
AP students to confirm that the AP grade scale of 1–5 is properly
aligned with current college standards.

In addition, the College Board has commissioned studies that use a
“bottom-line” approach to validating AP Exam grades by comparing the
achievement of AP versus non-AP students in higher-level college courses.
For example, in the 1998 Morgan and Ramist “21-College” study, AP students
who were exempted from introductory courses and who completed a
higher-level course in college were compared favorably, on the basis of their
college grades, with students who completed the prerequisite first course in
college, then took the second, higher-level course in the subject area. Such
studies answer the question of greatest concern to colleges — are AP stu-
dents who are exempted from introductory courses as well prepared to con-
tinue in a subject area as students who took their first course in college? To
see the results of several college validity studies, go to AP Central. (The
Morgan and Ramist study can be downloaded from the site in its entirety.)

Guidelines on Granting Credit and/or Placement for
AP Grades
If you are an admissions administrator and need guidance on setting an
AP policy for your college or university, you will find the College and

University Guide to the Advanced Placement Program useful; see the
back of this booklet for ordering information. Alternatively, contact your
local College Board office, as noted on the inside back cover of this
Course Description.

152 apcentral.collegeboard.com

Finding Colleges That Accept AP Grades

In addition to contacting colleges directly for their AP policies, students
and teachers can use College Search, an online resource maintained by the
College Board through its Annual Survey of Colleges. College Search can
be accessed via the College Board’s Web site (www.collegeboard.com). It
is worth remembering that policies are subject to change. Contact the col-
lege directly to get the most up-to-date information.

AP Awards

The AP Program offers a number of awards to recognize high school stu-
dents who have demonstrated college-level achievement through AP
courses and exams. Although there is no monetary award, in addition to
an award certificate, student achievement is acknowledged on any grade
report sent to colleges following the announcement of the awards. For
detailed information on AP Awards, including qualification criteria, visit AP
Central or contact the College Board’s National Office. Students can find
this information at www.collegeboard.com/apstudents.

AP Calendar

The AP Program Guide and the Bulletin for AP Students and Parents pro-
vide education professionals and students, respectively, with information on
the various events associated with the AP year. Information on ordering and
downloading these publications can be found at the back of this booklet.

Test Security

The entire AP Exam must be kept secure at all times. Forty-eight hours
after the exam has been administered, the green and blue inserts
containing the free-response questions (Section II) can be made
available for teacher and student review.* However, the multiple-

choice section (Section I) MUST remain secure both before and

after the exam administration. No one other than students taking the
exam can ever have access to or see the questions contained in Section
1 — this includes AP Coordinators and all teachers. The multiple-
choice section must never be shared, copied in any manner, or recon-
structed by teachers and students after the exam.

*The alternate form of the free-response section (used for late testing administration) is NOT
released.

apcentral.collegeboard.com 153

Selected multiple-choice questions are reused from year to year to
provide an essential method of establishing high exam reliability,
controlled levels of difficulty, and comparability with earlier exams.
These goals can be attained only when the multiple-choice questions
remain secure. This is why teachers cannot view the questions and
students cannot share information about these questions with anyone
following the exam administration.

To ensure that all students have an equal opportunity to demonstrate
their abilities on the exam, AP Exams must be administered in a uniform
manner. It is extremely important to follow the administration

schedule and all procedures outlined in detail in the most recent

AP Coordinator’s Manual. Please note that Studio Art portfolios and
their contents are not considered secure testing materials; see the AP

Coordinator’s Manual for further information. The manual also includes
directions on how to deal with misconduct and other security problems.
Any breach of security should be reported to Test Security immediately
(call 800 353-8570, fax 609 406-9709, or e-mail tsreturns@ets.org).

Teacher Support

You can find the following Web resources at AP Central:

• Teachers’ Resources (reviews of classroom resources).

• Institutes & Workshops (a searchable database of professional
development opportunities).

• The most up-to-date and comprehensive information on AP courses,
exams, and other Program resources.

• The opportunity to exchange teaching methods and materials with
the international AP community using electronic discussion groups
(EDGs).

• An electronic library of AP publications, including released exam
questions, the AP Coordinator’s Manual, Course Descriptions, and
sample syllabi.

• Opportunities for professional involvement in the AP Program.

• Information about state and federal support for the AP Program.

• AP Program data, research, and statistics.

• FAQs about the AP Program.

• Current news and features about the AP Program, its courses and
teachers.

154 apcentral.collegeboard.com

AP teachers can also use a number of AP publications, CD-ROMs, and
videos that supplement these Web resources. Please see the following
pages for an overview and ordering information.

Pre-AP®

Pre-AP® is a suite of K–12 professional development resources and services
to equip middle and high school teachers with the strategies and tools they
need to engage their students in high-level learning, thereby ensuring that
every middle and high school student has the depth and understanding of
the skills, habits of mind, and concepts they need to succeed in college.

Pre-AP rests upon a profound hope and heartfelt esteem for teachers and
students. Conceptually, Pre-AP is based on two important premises. The
first is the expectation that all students can perform at rigorous academic
levels. This expectation should be reflected in curriculum and instruction
throughout the school such that all students are consistently being chal-
lenged to expand their knowledge and skills to the next level.

The second is the belief that we can prepare every student for higher
intellectual engagement by starting the development of skills and acquisi-
tion of knowledge as early as possible. Addressed effectively, the middle
and high school years can provide a powerful opportunity to help all stu-
dents acquire the knowledge, concepts, and skills needed to engage in a
higher level of learning.

Since Pre-AP teacher professional development supports explicitly the
goal of college as an option for every student, it is important to have a
recognized standard for college-level academic work. The Advanced
Placement Program (AP) provides these standards for Pre-AP. Pre-AP
teacher professional development resources reflect topics, concepts, and
skills found in AP courses.

The College Board does not design, develop, or assess courses labeled
“Pre-AP.” Courses labeled “Pre-AP” that inappropriately restrict access to
AP and other college-level work are inconsistent with the fundamental
purpose of the Pre-AP initiatives of the College Board. We encourage
schools, districts, and policymakers to utilize Pre-AP professional devel-
opment in a manner that ensures equitable access to rigorous academic
experiences for all students.

apcentral.collegeboard.com 155

Pre-AP Professional Development

Pre-AP professional development is administered by Pre-AP Initiatives,
a unit in K–12 Professional Development, and is available through
workshops and conferences coordinated by the regional offices of
the College Board. Pre-AP professional development is divided into
two categories:

1. Articulation of content and pedagogy across the middle and

high school years — The emphasis of professional development in
this category is aligning curriculum and improving teacher communi-
cation. The intended outcome from articulation is a coordinated pro-
gram of teaching skills and concepts over several years.

2. Classroom strategies for middle and high school teachers —

Various approaches, techniques, and ideas are emphasized in profes-
sional development in the category.

For a complete list of Pre-AP Professional Development offerings, please
contact your regional office or visit AP Central at apcentral.collegeboard.com.

AP Publications and Other Resources

A number of AP resources are available to help students, parents, AP
Coordinators, and high school and college faculty learn more about the AP
Program and its courses and exams. To identify resources that may be of
particular use to you, refer to the following key.

AP Coordinators and Administrators A

College Faculty . C

Students and Parents . SP

Teachers . T

Ordering Information

You have several options for ordering publications:

• Online. Visit the College Board store at store.collegeboard.com.

• By mail. Send a completed order form with your payment or credit
card information to: Advanced Placement Program, Dept. E-06, P. O.
Box 6670, Princeton, NJ 08541-6670. If you need a copy of the order
form, you can download one from AP Central.

156 apcentral.collegeboard.com

• By fax. Credit card orders can be faxed to AP Order Services at
609 771-7385.

• By phone. Call AP Order Services at 609 771-7243, Monday through
Friday, 8:00 a.m. to 9:00 p.m. ET. Have your American Express,
Discover, JCB, MasterCard, or VISA information ready. This phone
number is for credit card orders only.

Payment must accompany all orders not on an institutional purchase order
or credit card, and checks should be made payable to the College Board.
The College Board pays UPS ground rate postage (or its equivalent) on all
prepaid orders; delivery generally takes two to three weeks. Please do not
use P.O. Box numbers. Postage will be charged on all orders requiring
billing and/or requesting a faster method of delivery.

Publications may be returned for a full refund if they are returned
within 30 days of invoice. Software and videos may be exchanged within
30 days if they are opened, or returned for a full refund if they are
unopened. No collect or C.O.D. shipments are accepted. Unless otherwise
specified, orders will be filled with the currently available edition; prices
and discounts are subject to change without notice.

In compliance with Canadian law, all AP publications delivered to
Canada incur the 7 percent GST. The GST registration number is 13141
4468 RT. Some Canadian schools are exempt from paying the GST.
Appropriate proof of exemption must be provided when AP publications
are ordered so that tax is not applied to the billing statement.

Print

Items marked with a computer mouse icon can be downloaded for free
from AP Central.

Bulletin for AP Students and Parents SP

This bulletin provides a general description of the AP Program, including
how to register for AP courses, and information on the policies and proce-
dures related to taking the exams. It describes each AP Exam, lists the
advantages of taking the exams, describes the grade reporting process,
and includes the upcoming exam schedule. The Bulletin is available in
both English and Spanish.

AP Program Guide A

This guide takes the AP Coordinator step-by-step through the school
year — from organizing an AP program, through ordering and administer-
ing the AP Exams, payment, and grade reporting. It also includes infor-

m

m

apcentral.collegeboard.com 157

mation on teacher professional development, AP resources, and exam
schedules. The AP Program Guide is sent automatically to all schools that
register to participate in AP.

College and University Guide to the AP Program C, A

This guide is intended to help college and university faculty and admin-
istrators understand the benefits of having a coherent, equitable AP
policy. Topics included are validity of AP grades; developing and main-
taining scoring standards; ensuring equivalent achievement; state
legislation supporting AP; and quantitative profiles of AP students by
each AP subject.

Course Descriptions SP, T, A, C

Course Descriptions provide an outline of the AP course content, explain
the kinds of skills students are expected to demonstrate in the correspond-
ing introductory college-level course, and describe the AP Exam. They also
provide sample multiple-choice questions with an answer key, as well as
sample free-response questions. Note: The Course Description for AP
Computer Science is available in electronic format only.

Pre-AP A, T

This brochure describes the Pre-AP concept and the professional
development opportunities available to middle school and high
school teachers.

Released Exams T

About every four to five years, on a rotating schedule, the AP Program
releases a complete copy of each exam. In addition to providing the
multiple-choice questions and answers, the publication describes the
process of scoring the free-response questions and includes examples
of students’ actual responses, the scoring guidelines, and commentary
that explains why the responses received the scores they did.

Teacher’s Guides T

For those about to teach an AP course for the first time, or for experi-
enced AP teachers who would like to get some fresh ideas for the class-
room, the Teacher’s Guide is an excellent resource. Each Teacher’s Guide
contains syllabi developed by high school teachers currently teaching the

m

m

AP course and college faculty who teach the equivalent course at colleges
and universities. Along with detailed course outlines and innovative teach-
ing tips, you’ll also find extensive lists of suggested teaching resources.

AP Vertical Team Guides T, A

An AP Vertical Team (APVT) is made up of teachers from different grade
levels who work together to develop and implement a sequential curricu-
lum in a given discipline. The team’s goal is to help students acquire the
skills necessary for success in AP. To help teachers and administrators
who are interested in establishing an APVT at their school, the College
Board has published these guides: A Guide for Advanced Placement

English Vertical Teams; Advanced Placement Program Mathematics

Vertical Teams Toolkit; AP Vertical Teams in Science, Social Studies,

Foreign Language, Studio Art, and Music Theory: An Introduction;
AP Vertical Teams Guide for Social Studies; AP Vertical Teams Guide

for Fine Arts, Vol.1: Studio Art; AP Vertical Teams Guide for Fine Arts,

Vol. 2: Music Theory; and AP Vertical Teams Guide for Fine Arts, Vol.1

and 2 (set).

Multimedia

APCD® (home version),

(multi-network site license) SP, T

These CD-ROMs are available for Calculus AB, English Language, English
Literature, European History, Spanish Language, and U.S. History. They
each include actual AP Exams, interactive tutorials, and other features,
including exam descriptions, answers to frequently asked questions, study-
skill suggestions, and test-taking strategies. There is also a listing of
resources for further study and a planner to help students schedule and
organize their study time.

The teacher version of each CD, which can be licensed for up to 50
workstations, enables you to monitor student progress and provide indi-
vidual feedback. Included is a Teacher’s Manual that gives full explana-
tions along with suggestions for utilizing the APCD in the classroom.

158 apcentral.collegeboard.com

College Board Offices

National Office

45 Columbus Avenue, New York, NY 10023-6992
212 713-8066
E-mail: ap@collegeboard.org

Middle States

Serving Delaware, District of Columbia, Maryland, New Jersey, New York, Pennsylvania,
and Puerto Rico
Two Bala Plaza, Suite 900, Bala Cynwyd, PA 19004-1501
610 670-4400
E-mail: msro@collegeboard.org

Midwestern

Serving Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska,
North Dakota, Ohio, South Dakota, West Virginia, and Wisconsin
1560 Sherman Avenue, Suite 1001, Evanston, IL 60201-4805
847 866-1700
E-mail: mro@collegeboard.org

New England

Serving Connecticut, Maine, Massachusetts, New Hampshire,
Rhode Island, and Vermont
470 Totten Pond Road, Waltham, MA 02451-1982
781 890-9150
E-mail: nero@collegeboard.org

Southern

Serving Alabama, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina,
South Carolina, Tennessee, and Virginia
3700 Crestwood Parkway, Suite 700, Duluth, GA 30096-5599
678 380-3300
E-mail: sro@collegeboard.org

Southwestern

Serving Arkansas, New Mexico, Oklahoma, and Texas
4330 South MoPac Expressway, Suite 200, Austin, TX 78735-6734
512 891-8400
E-mail: swro@collegeboard.org

Western

Serving Alaska, Arizona, California, Colorado, Hawaii, Idaho, Montana, Nevada,
Oregon, Utah, Washington, and Wyoming
2099 Gateway Place, Suite 480, San Jose, CA 95110-1048
408 452-1400
E-mail: wro@collegeboard.org

Dallas Metroplex Office

Box 19666, 600 South West Street, Suite 108, Arlington, TX 76019
817 272-7200
E-mail: kwilson@collegeboard.org

Canada

1708 Dolphin Avenue, Suite 406, Kelowna, BC, Canada V1Y 9S4
250 861-9050; 800 667-4548 in Canada only
E-mail: gewonus@collegeboard.org

International

Serving all countries outside the United States and Canada
45 Columbus Avenue, New York, NY 10023-6992
212 713-8091
E-mail: apintl@collegeboard.org

C

2002-03 Development Committee
and Chief Reader

Mark Weiss, Florida International University, Miami, Chair
Robert (Scot) Drysdale, Dartmouth College, Hanover, New Hampshire
Reginald Hahne, Atholton High School, Maryland
Judith Hromcik, Arlington High School, Texas
Richard Kick, Hinsdale Central High School, Illinois
Andrea Lawrence, Spelman College, Atlanta, Georgia
Julie Zelenski, Stanford University, California
Chief Reader: Christopher Nevison, Colgate University, Hamilton, New York
ETS Consultants: Frances Hunt, Dennis Ommert

apcentral.collegeboard.com

I.N. 997134

