David Levine – Sort Detective (CS2)

http://web.sbu.edu/cs/dlevine/Nifty/

The sort detective is meant to test students’ understanding of sorting algorithms and their behaviors on particular kinds of data sets. It can be used to compare and contrast any number of (comparison-based) sorting algorithms.

A common laboratory for studying sorts and asymptotic run-time behavior has the students run various (pre-written?) sorts on particular sets of data and draw particular conclusions from the results. Such labs are sometimes praised as exemplifying the scientific method, but they are often subject to the criticism that they are very cookbookish. They tend to require students to spend a lot of time waiting for results - time that their mind is not engaged. (Some students sometimes cite this as a positive factor on course evaluations, but instructors often choose to disagree.)

The SortDetective turns this assignment on its head. Students are presented with a complete program containing various sorting algorithms, data input capabilities, and measurements that can be made. Unfortunately, all of the algorithms are "anonymous". Rather than being told what sorts to run, the students must design their own experiments so as to match the behaviors with the algorithms. As a result, it would be very odd for any two independent groups to do the same thing!

The students must make the same measurements as in the more traditional lab, but then they must actively associate those measurements with a theory rather than seeing "if they fit". They must exhibit more judgment about what constitutes "good enough". Finally, they must write up their conclusions in a relatively "free" format.

Nifty things about this assignment:

· Students must design their own experiments, requiring a higher degree of engagement than the “traditional” lab.

· NO CODING! Computer science is not programming, but many of our lab exercises give this impression. This one does not.

· It is easy to change the assignment from semester to semester by changing the mapping of the sorts and/or by reimplementing one of the algorithms to make it match the textbook's version.

· Source code for the project can serve as a small case study for design.

